|
SIGMA 4 (2008), 010, 23 pages arXiv:0711.0041
https://doi.org/10.3842/SIGMA.2008.010
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics
Global Attraction to Solitary Waves in Models Based on the Klein-Gordon Equation
Alexander I. Komech a, c and Andrew A. Komech b, c
a) Faculty of Mathematics, University of Vienna, Wien A-1090, Austria
b) Mathematics Department, Texas A&M University, College Station, TX 77843, USA
c) Institute for Information Transmission Problems, B. Karetny 19, Moscow 101447, Russia
Received November 01, 2007, in final form January 22, 2008; Published online January 31, 2008
Abstract
We review recent results
on global attractors of U(1)-invariant
dispersive Hamiltonian systems.
We study several models
based on the Klein-Gordon equation
and sketch the proof that in these models,
under certain generic assumptions,
the weak global attractor is represented
by the set of all solitary waves.
In general,
the attractors may also contain multifrequency solitary waves;
we give examples of systems
which contain such solutions.
Key words:
global attractors; solitary waves; solitary asymptotics; nonlinear Klein-Gordon equation; dispersive Hamiltonian systems; unitary invariance.
pdf (449 kb)
ps (319 kb)
tex (171 kb)
References
- Babin A.V., Vishik M.I., Attractors of evolution equations, of
Studies in Mathematics and its Applications, Vol. 25, North-Holland Publishing
Co., Amsterdam, 1992 (translated and revised from the 1989 Russian original
by Babin).
- Berestycki H., Lions P.-L., Nonlinear scalar field equations.
I. Existence of a ground state, Arch. Ration. Mech. Anal. 82
(1983), 313-345.
- Berestycki H., Lions P.-L., Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal.
82 (1983), 347-375.
- Bohr N., On the constitution of atoms and molecules, Phil. Mag.
26 (1913), 1-25.
- Brezis H., Lieb E.H., Minimum action solutions of some vector field
equations, Comm. Math. Phys. 96 (1984), 97-113.
- Broglie L.D., Recherches sur la théorie des Quanta, Thèses, Paris, 1924.
- Buslaev V.S., Perel'man G.S., Scattering for the nonlinear
Schrödinger equation: states that are close to a soliton, St.
Petersburg Math. J. 4 (1993), 1111-1142.
- Buslaev V.S., Perel'man G.S., On the stability of solitary waves
for nonlinear Schrödinger equations, in Nonlinear Evolution Equations,
Amer. Math. Soc. Transl. Ser. 2, Vol. 164, Amer. Math.
Soc., Providence, RI, 1995, 75-98.
- Buslaev V.S., Sulem C., On asymptotic stability of solitary waves for
nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non
Linéaire 20 (2003), 419-475.
- Cazenave T., Vázquez L., Existence of localized solutions for a
classical nonlinear Dirac field, Comm. Math. Phys. 105
(1986), 35-47.
- Comech A.A., Numerical simulations of the Klein-Gordon field with
nonlinear interaction (2007), scripts for GNU Octave, http://www.math.tamu.edu/~comech/tools/kg-string.
- Cuccagna S., Asymptotic stability of the ground states of the nonlinear
Schrödinger equation, Rend. Istit. Mat. Univ. Trieste 32
(2001), 105-118.
- Cuccagna S., Stabilization of solutions to nonlinear Schrödinger
equations, Comm. Pure Appl. Math. 54 (2001), 1110-1145.
- Cuccagna S., On asymptotic stability of ground states of NLS, Rev.
Math. Phys. 15 (2003), 877-903.
- Derrick G.H., Comments on nonlinear wave equations as models for elementary
particles, J. Math. Phys. 5 (1964), 1252-1254.
- Esteban M.J., Georgiev V., Séré E., Stationary solutions of the
Maxwell-Dirac and the Klein-Gordon-Dirac equations, Calc. Var.
Partial Differential Equations 4 (1996), 265-281.
- Esteban M.J., Séré É., Stationary states of the nonlinear
Dirac equation: a variational approach, Comm. Math. Phys. 171
(1995), 323-350.
- Gell-Mann M., Ne'eman Y., The eightfold way, W.A. Benjamin, Inc., New
York, NY, 1964.
- Ginibre J., Velo G., Time decay of finite energy solutions of the
nonlinear Klein-Gordon and Schrödinger equations, Ann. Inst. H.
Poincaré Phys. Théor. 43 (1985), 399-442.
- Glassey R.T., Strauss W.A., Decay of a Yang-Mills field coupled to a
scalar field, Comm. Math. Phys. 67 (1979), 51-67.
- Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves
in the presence of symmetry. I, J. Funct. Anal. 74 (1987),
160-197.
- Guo Y., Nakamitsu K., Strauss W., Global finite-energy solutions of the
Maxwell-Schrödinger system, Comm. Math. Phys. 170 (1995),
181-196.
- Henry D., Geometric theory of semilinear parabolic equations, Springer, 1981.
- Hörmander L., The analysis of linear partial differential operators. I, 2nd ed.,
Springer Study Edition, Springer-Verlag, Berlin, 1990.
- Hörmander L., On the fully nonlinear Cauchy problem with small data. II, in Microlocal Analysis and Nonlinear Waves (Minneapolis, MN,
1988-1989), IMA Vol. Math. Appl., Vol. 30, Springer,
New York, 1991, 51-81.
- Jörgens K., Das Anfangswertproblem im Grossen für eine Klasse
nichtlinearer Wellengleichungen, Math. Z. 77 (1961),
295-308.
- Klainerman S., Long-time behavior of solutions to nonlinear evolution
equations, Arch. Ration. Mech. Anal. 78 (1982), 73-98.
- Komech A., On transitions to stationary states in one-dimensional nonlinear
wave equations, Arch. Ration. Mech. Anal. 149 (1999), 213-228.
- Komech A., Spohn H., Long-time asymptotics for the coupled
Maxwell-Lorentz equations, Comm. Partial Differential Equations
25 (2000), 559-584.
- Komech A., Spohn H., Kunze M., Long-time asymptotics for a classical
particle interacting with a scalar wave field, Comm. Partial
Differential Equations 22 (1997), 307-335.
- Komech A., Vainberg B., On asymptotic stability of stationary solutions to
nonlinear wave and Klein-Gordon equations, Arch. Ration. Mech.
Anal. 134 (1996), 227-248.
- Komech A.I., Stabilization of the interaction of a string with a nonlinear
oscillator, Mosc. Univ. Math. Bull. 46 (1991), 34-39.
- Komech A.I., On stabilization of string-nonlinear oscillator interaction,
J. Math. Anal. Appl. 196 (1995), 384-409.
- Komech A.I., On attractor of a singular nonlinear U(1)-invariant
Klein-Gordon equation, in Progress in analysis, Vol. I, II (2001, Berlin), World Sci. Publishing, River Edge, NJ, 2003, 599-611.
- Komech A.I., Komech A.A., Global attractor for a nonlinear oscillator
coupled to the Klein-Gordon field, Arch. Ration. Mech. Anal.
185 (2007), 105-142, math.AP/0609013.
- Komech A.I., Komech A.A., On global attraction to quantum stationary
states II. Several nonlinear oscillators coupled to massive scalar field,
MPI Preprint Series 17/2007 (2007), available at http://www.mis.mpg.de/preprints/2007/prepr2007_17.html.
- Komech A.I., Komech A.A., On global attraction to quantum stationary
states III. Klein-Gordon equation with mean field interaction, MPI
Preprint Series 66/2007 (2007), available at http://www.mis.mpg.de/preprints/2007/prepr2007_66.html.
- Levin B.Y., Lectures on entire functions, Translations of
Mathematical Monographs, Vol. 150, American Mathematical Society, Providence, RI,
1996 (in collaboration with and with a preface by Yu. Lyubarskii, M. Sodin
and V. Tkachenko, translated from the Russian manuscript by Tkachenko).
- Morawetz C.S., Strauss W.A., Decay and scattering of solutions of a
nonlinear relativistic wave equation, Comm. Pure Appl. Math. 25
(1972), 1-31.
- Pillet C.-A., Wayne C.E., Invariant manifolds for a class of dispersive,
Hamiltonian, partial differential equations, J. Differential
Equations 141 (1997), 310-326.
- Schiff L.I., Nonlinear meson theory of nuclear forces. I. Neutral scalar
mesons with point-contact repulsion, Phys. Rev. 84 (1951),
1-9.
- Schiff L.I., Nonlinear meson theory of nuclear forces. II. Nonlinearity
in the meson-nucleon coupling, Phys. Rev. 84 (1951), 10-11.
- Schrödinger E., Quantisierung als eigenwertproblem, Ann. Phys.
81 (1926), 109-139.
- Segal I.E., The global Cauchy problem for a relativistic scalar field with
power interaction, Bull. Soc. Math. France 91 (1963), 129-135.
- Segal I.E., Non-linear semi-groups, Ann. of Math. (2) 78
(1963), 339-364.
- Segal I.E., Quantization and dispersion for nonlinear relativistic equations,
in Proc. Conf. "Mathematical Theory of Elementary Particles" (1965, Dedham, Mass.), M.I.T. Press, Cambridge, Mass., 1966, 79-108.
- Shatah J., Stable standing waves of nonlinear Klein-Gordon equations,
Comm. Math. Phys. 91 (1983), 313-327.
- Shatah J., Unstable ground state of nonlinear Klein-Gordon equations,
Trans. Amer. Math. Soc. 290 (1985), 701-710.
- Shatah J., Strauss W., Instability of nonlinear bound states, Comm.
Math. Phys. 100 (1985), 173-190.
- Soffer A., Weinstein M.I., Multichannel nonlinear scattering for
nonintegrable equations, Comm. Math. Phys. 133 (1990),
119-146.
- Soffer A., Weinstein M.I., Multichannel nonlinear scattering for
nonintegrable equations. II. The case of anisotropic potentials and data,
J. Differential Equations 98 (1992), 376-390.
- Soffer A., Weinstein M.I., Resonances, radiation damping and instability
in Hamiltonian nonlinear wave equations, Invent. Math. 136
(1999), 9-74, chao-dyn/9807003.
- Strauss W.A., Decay and asymptotics for u = f(u), J.
Funct. Anal. 2 (1968), 409-457.
- Strauss W.A., Existence of solitary waves in higher dimensions, Comm.
Math. Phys. 55 (1977), 149-162.
- Tao T., A (concentration-)compact attractor for high-dimensional non-linear
Schrödinger equations, Dyn. Partial Differ. Equ. 4 (2007),
1-53, math.AP/0611402.
- Temam R., Infinite-dimensional dynamical systems in mechanics and physics, 2nd ed.,
Applied Mathematical Sciences, Vol. 68, Springer-Verlag, New York,
1997.
- Titchmarsh E., The zeros of certain integral functions, Proc.
London Math. Soc. 25 (1926), 283-302.
- Vakhitov M.G., Kolokolov A.A., Stationary solutions of the wave equation
in the medium with nonlinearity saturation, Radiophys. Quantum
Electron. 16 (1973), 783-789.
|
|