Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 4 (2008), 022, 18 pages      arXiv:0802.2638      https://doi.org/10.3842/SIGMA.2008.022
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics

Hidden Symmetries of M-Theory and Its Dynamical Realization

Alexei J. Nurmagambetov
A.I. Akhiezer Institute for Theoretical Physics, NSC ''Kharkov Institute of Physics and Technology'', 1 Akademicheskaya Str., 61108 Kharkiv, Ukraine

Received October 31, 2007, in final form February 06, 2008; Published online February 19, 2008

Abstract
We discuss hidden symmetries of M-theory, its feedback on the construction of the M-theory effective action, and a response of the effective action when locality is preserved. In particular, the locality of special symmetries of the duality-symmetric linearized gravity constraints the index structure of the dual to graviton field in the same manner as it is required to separate the levels 0 and 1 generators subalgebra from the infinite-dimensional hidden symmetry algebra of gravitational theory. This conclusion fails once matter fields are taken into account and we give arguments for that. We end up outlining current problems and development perspectives.

Key words: duality; gravity; supergravity.

pdf (404 kb)   ps (347 kb)   tex (267 kb)

References

  1. West P.C., E11 and M-theory, Classical Quantum Gravity 18 (2001), 4443-4460, hep-th/0104081.
  2. Gaberdiel M.R., Olive D.I., West P.C., A class of Lorentzian Kac-Moody algebras, Nuclear Phys. B 645 (2002), 403-437, hep-th/0205068.
  3. Buyl S., Kac-Moody algebras in M-theory, hep-th/0608161 (and references therein).
  4. West P.C., Very extended E8 and A8 at low levels, gravity and supergravity, Classical Quantum Gravity 20 (2002), 2393-2406, hep-th/0212291.
  5. Bandos I., Lechner K., Nurmagambetov A., Pasti P., Sorokin D., Tonin M., Covariant action for super-five-brane of M theory, Phys. Rev. Lett. 78 (1997), 4332-4335, hep-th/9701149.
  6. Aganagic M., Park J., Popescu C., Schwarz J.H., World-volume action of the M theory five-brane, Nuclear Phys. B 496 (1997), 191-214, hep-th/9701166.
  7. Bandos I., Berkovits N., Sorokin D., Duality-symmetric eleven-dimensional supergravity and its coupling to M-branes, Nuclear Phys. B 522 (1998), 214-233, hep-th/9711055.
  8. Pasti P., Sorokin D., Tonin M., Note on manifest Lorentz and general coordinate invariance in duality symmetric models, Phys. Lett. B 352 (1995), 59-63, hep-th/9503182.
    Pasti P., Sorokin D., Tonin M., Duality symmetric actions with manifest space-time symmetries, Phys. Rev. D 52 (1995), 4277-4281, hep-th/9506109.
    Pasti P., Sorokin D., Tonin M., On Lorentz invariant actions for chiral p-forms, Phys. Rev. D 55 (1997), 6292-6298, hep-th/9611100.
  9. Damour T., Henneaux M., Nicolai H., E10 and a "small tension expansion" of M-theory, Phys. Rev. Lett. 89 (2002), 221601, 4 pages, hep-th/0207267.
  10. Englert F., Houart L., G+++ invariant formulation of gravity and M-theories: exact BPS solutions, J. High Energy Phys. 2004 (2004), no. 1, 002, 45 pages; hep-th/0311255.
  11. Henneaux M., Persson D., Spindel Ph., Spacelike singularities and hidden symmetries of gravity, arXiv:0710.1818.
  12. Damour T., Nicolai H., Symmetries, singularities and the de-emergence of space, arXiv:0705.2643.
  13. Bandos I.A., Nurmagambetov A.J., Sorokin D.P., Various faces of type IIA supergravity, Nuclear Phys. B 676 (2004), 189-228, hep-th/0307153.
  14. Cremmer E., Julia B., Lü H., Pope C.N., Dualisation of dualities II: Twisted self-duality of doubled fields and superdualities, Nuclear Phys. B 535 (1998), 242-292, hep-th/9806106.
  15. Nurmagambetov A.J., The sigma-model representation for the duality-symmetric D=11 supergravity, in Proceedings of Fifth International Conference "Symmetry in Nonlinear Mathematical Physics" (June 23-29, 2003, Kyiv), Editors A.G. Nikitin, V.M. Boyko, R.O. Popovych and I.A. Yehorchenko, Proceedings of Institute of Mathematics, Kyiv 50 (2004), Part 2, 894-901, hep-th/0312157.
  16. Nurmagambetov A.J., Sigma-model-like action for type IIA supergravity in doubled field approach, in Proceedings of International Workshop SQS'03 (July 24-29, 2003, Dubna), 2003, 84-89.
  17. Nurmagambetov A.J., On the sigma-model structure of type IIA supergravity action in doubled field approach, JETP Lett. 79 (2004), 191-195, hep-th/0403100.
  18. Nurmagambetov A.J., Duality-symmetric gravity and supergravity: testing the PST approach, Ukr. J. Phys. 51 (2006), 330-338, hep-th/0407116.
  19. Nurmagambetov A.J., Duality-symmetric approach to General Relativity and supergravity, SIGMA 2 (2006), 020, 34 pages, hep-th/0602145.
  20. Morrison D.R., TASI lectures on compactification and duality, hep-th/0411120.
  21. Nurmagambetov A.J., On E(11) of M-theory: 1. Hidden symmetries of maximal supergravities and LEGO of Dynkin diagrams, in Proceedings of II International Conference on QED and Statistical Physics (September 19-23, Kharkov, Ukraine), Problems of Atomic Science and Technology 3 (2007), 51-55.
  22. Lambert N.D., West P.C., Coset symmetries in dimensionally reduced bosonic string theory, Nuclear Phys. B 615 (2001), 117-132, hep-th/0107209.
  23. Nurmagambetov A.J., Diagrammar and metamorphosis of coset symmetries in dimensionally reduced type IIB supergravity, JETP Lett. 79 (2004), 355-359, hep-th/0403101.
  24. Kac V.G., Infinite dimensional Lie algebras, Birkhäuser, Boston, 1983.
  25. Bergshoeff E., Nutma T.A., De Baetselier I., E11 and the embedding tensor, arXiv:0705.1304.
  26. Kleinschmidt A., Schnakenburg I., West P.C., Very-extended Kac-Moody algebras and their interpretation at low levels, Classical Quantum Gravity 21 (2004), 2493-2525, hep-th/0309198.
  27. Nicolai H., Townsend P.K., Nieuwenhuizen P., Comments on 11-dimensional supergravity, Lett. Nuovo Cimento 30 (1981), 315-320.
  28. D'Auria R., Fre P., Geometric supergravity in d = 11 and its hidden supergroup, Nuclear Phys. B 201 (1982), 101-140, Erratum, Nuclear Phys. B 206 (1982), 496.
  29. Ehlers J., Les théories relativistes de la gravitation, CNRS, Paris, 1959.
  30. Matzner R., Misner C., Gravitational field equations for sources with axial symmetry and angular momentum, Phys. Rev. 154 (1967), 1229-1232.
  31. Geroch R., A method for generating solutions of Einstein's equations, J. Math. Phys. 12 (1971), 918-924.
  32. Breitenlohner P., Maison D., On the Geroch group, Ann. Inst. H. Poincaré 46 (1987), 215-246.
  33. Julia B., Kac-Moody symmetry of gravitation and supergravity theories, AMS-SIAM Seminar Proceedings, Chicago, 1982, Preprint LPTENS-82-22, 1982, 25 pages.
  34. Nicolai H., A hyperbolic Lie algebra from supergravity, Phys. Lett. B 276 (1992), 333-340.
  35. van Nieuwenhuizen P., Supergravity, Phys. Rep. 68 (1981), 189-398.
  36. Garcia-Compean H., Obregon O., Plebansky J.F., Ramirez C., Towards a gravitational analogue to S-duality in non-Abelian gauge theories, Phys. Rev. D 57 (1998), 7501-7506, hep-th/9711115.
  37. Garcia-Compean H., Obregon O., Ramirez C., Gravitational duality in MacDowell-Mansouri gauge theory, Phys. Rev. D 58 (1998), 104012, 3 pages, hep-th/9802063.
  38. Nieto J.A., S-duality for linearized gravity, Phys. Lett. A 262 (1999), 274-281, hep-th/9910049.
  39. Hull C.M., Gravitational duality, branes and charges, Nuclear Phys. B 509 (1998), 216-251, hep-th/9705162.
  40. Hull C.M., Strongly coupled gravity and duality, Nuclear Phys. B 583 (2000), 237-259, hep-th/0004195.
  41. Hull C.M., Duality in gravity and higher spin gauge fields, J. High Energy Phys. 2001 (2001), no. 9, 027, 25 pages, hep-th/0107149.
  42. Boulanger N., Cnockaert S., Henneaux M., A note on spin-s duality, J. High Energy Phys. 2003 (2003), no. 6, 060, 18 pages, hep-th/0306023.
  43. Henneaux M., Teitelboim C., Duality in linearized gravity, Phys. Rev. D 71 (2005), 024018, 8 pages, gr-qc/0408101.
  44. Julia B., Levie J., Ray S., Gravitational duality near de Sitter space, J. High Energy Phys. 2005 (2005), no. 11, 025, 13 pages, hep-th/0507262.
  45. Ajith K.M., Harikumar E., Sivakumar M., Dual linearized gravity in arbitrary dimensions, Classical Quantum Gravity 22 (2005), 5385-5396, hep-th/0411202.
  46. Padmanabhan T., From graviton to gravity: myths and reality, gr-qc/0409089.
  47. Leclerc M., Canonical and gravitational stress-energy tensors, Internat. J. Modern Phys. D 15 (2006), 959-990, gr-qc/0510044.


Previous article   Next article   Contents of Volume 4 (2008)