|
SIGMA 4 (2008), 032, 13 pages arXiv:0711.4550
https://doi.org/10.3842/SIGMA.2008.032
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics
Equivariance, Variational Principles, and the Feynman Integral
George Svetlichny
Departamento de Matemática, Pontifícia Unversidade Católica, Rio de Janeiro, Brazil
Received November 02, 2007, in final form March 13, 2008; Published online March 19, 2008
Abstract
We argue that the variational calculus leading to Euler's equations and Noether's theorem can be replaced by equivariance and invariance conditions avoiding the action integral. We also speculate about the origin of Lagrangian theories in physics and their connection to Feynman's integral.
Key words:
Lagrangians; calculus of variations; Euler's equations; Noether's theorem; equivariance; Feynman's integral.
pdf (217 kb)
ps (165 kb)
tex (17 kb)
References
- Saunders D.J., The geometry of jet bundles, Cambridge University Press, 1989.
- Olver P.J., Equivalence, invariants and symmetry, Cambridge University Press, 1995.
- Svetlichny G., Feynman's integral is about mutually unbiased bases, arXiv:0708.3079.
- Kolar I., Michor P.W., Slovak J., Natural operations in differential geometry, Springer, New York, 1993, available at
http://www.emis.de/monographs/KSM/.
- Olver P.J., Applications of Lie groups to
differential equations, Springer, New York, 1986.
- Otterson P., Svetlichny G., On derivative-dependent infinitesimal deformations of differentiable maps, J. Differential Equations 36 (1980), 270-294.
- Svetlichny G., Why Lagrangians?, in Proceedings XXVI Workshop on Geometrical Methods in Physics
(July 1-7, 2007, Bialowieza, Poland), AIP Conference Proceedings, Vol. 956,
Editors P. Kielanowski, A. Odzijewicz, M. Schlichenmeier and T. Voronov, AIP, New York, 2007, 120-125.
- Bengtsson I., Three ways to look at mutually unbiased bases, quant-ph/0610216.
|
|