Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 4 (2008), 042, 14 pages      math.QA/0601541      https://doi.org/10.3842/SIGMA.2008.042

Local Quasitriangular Hopf Algebras

Shouchuan Zhang a, b, Mark D. Gould b and Yao-Zhong Zhang b
a) Department of Mathematics, Hunan University, Changsha 410082, P.R. China
b) Department of Mathematics, University of Queensland, Brisbane 4072, Australia

Received January 31, 2008, in final form April 30, 2008; Published online May 09, 2008

Abstract
We find a new class of Hopf algebras, local quasitriangular Hopf algebras, which generalize quasitriangular Hopf algebras. Using these Hopf algebras, we obtain solutions of the Yang-Baxter equation in a systematic way. The category of modules with finite cycles over a local quasitriangular Hopf algebra is a braided tensor category.

Key words: Hopf algebra; braided category.

pdf (265 kb)   ps (205 kb)   tex (19 kb)

References

  1. Auslander M., Reiten I., Smalø S.O., Representation theory of Artin algebras, Cambridge University Press, 1995.
  2. Belavin A.A., Drinfel'd V.G., solutions of the classical Yang-Baxter equations for simple Lie algebras, Functional Anal. Appl. 16 (1982), no. 3, 159-180.
  3. Chin W., Montgomery S., Basic coalgebras, in Modular Interfaces (1995, Riverside, CA), AMS/IP Stud. Adv. Math., Vol. 4, Amer. Math. Soc., Providence, RI, 1997, 41-47.
  4. Cibils C., Rosso M., Hopf quivers, J. Algebra 254 (2002), 241-251, math.QA/0009106.
  5. Cibils C., Rosso M., Algebres des chemins quantiques, Adv. Math. 125 (1997), 171-199.
  6. Drinfel'd V.G., Quantum groups, in Proceedings International Congress of Mathematicians (August 3-11, 1986, Berkeley, CA), Amer. Math. Soc., Providence, RI, 1987, 798-820.
  7. Dascalescu S., Nastasescu C., Raianu S., Hopf algebras: an introduction, Marcel Dekker Inc., 2001.
  8. Doi Y., Takeuchi M., Multiplication alteration by two-cocycles - the quantum version, Comm. Algebra 22 (1994), 5715-5732.
  9. Jantzen J.C., Lectures on quantum groups, Graduate Studies in Mathematics, Vol. 6, Amer. Math. Soc., Providence, RI, 1996.
  10. Majid S., Algebras and Hopf algebras in braided categories, in Advances in Hopf Algebras (1992, Chicago, IL), Lecture Notes in Pure and Appl. Math., Vol. 158, Marcel Dekker, New York, 1994, 55-105.
  11. Montgomery S., Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, Vol. 82, Amer. Math. Soc., Providence, RI, 1993.
  12. Nichols W., Bialgebras of type one, Comm. Algebra 6 (1978), 1521-1552.
  13. Lusztig G., Introduction to quantum groups, Progress in Mathematics, Vol. 110, Birkhäuser, Boston, MA, 1993.
  14. Kassel C., Quantum groups, Graduate Texts in Mathematics, Vol. 155, Springer-Verlag, New York, 1995.
  15. Sweedler M.E., Hopf algebras, Benjamin, New York, 1969.
  16. Yang C.N., Ge M.L. (Editors), Braid group, knot theory and statistical mechanics, World Scientific, Singapore, 1989.
  17. Zhang S., Chen H.-X., The double bicrossproducts in braided tensor categories, Comm. Algebra 29 (2001), 31-66.


Previous article   Next article   Contents of Volume 4 (2008)