|
SIGMA 4 (2008), 042, 14 pages math.QA/0601541
https://doi.org/10.3842/SIGMA.2008.042
Local Quasitriangular Hopf Algebras
Shouchuan Zhang a, b, Mark D. Gould b and Yao-Zhong Zhang b
a) Department of Mathematics, Hunan University, Changsha 410082, P.R. China
b) Department of Mathematics, University of Queensland, Brisbane 4072, Australia
Received January 31, 2008, in final form April 30, 2008; Published online May 09, 2008
Abstract
We find a new class of Hopf algebras, local quasitriangular Hopf
algebras, which generalize quasitriangular Hopf algebras. Using
these Hopf algebras, we obtain solutions of the Yang-Baxter equation
in a systematic way. The category of modules with finite cycles
over a local quasitriangular Hopf algebra is a braided tensor category.
Key words:
Hopf algebra; braided category.
pdf (265 kb)
ps (205 kb)
tex (19 kb)
References
- Auslander M., Reiten I., Smalø S.O., Representation
theory of Artin algebras, Cambridge University Press, 1995.
- Belavin A.A., Drinfel'd V.G.,
solutions of the classical Yang-Baxter equations for simple Lie
algebras, Functional Anal. Appl. 16 (1982), no. 3, 159-180.
- Chin W., Montgomery S., Basic coalgebras,
in Modular Interfaces (1995, Riverside, CA),
AMS/IP Stud. Adv. Math., Vol. 4, Amer. Math. Soc.,
Providence, RI, 1997, 41-47.
- Cibils C., Rosso M., Hopf quivers, J. Algebra 254
(2002), 241-251, math.QA/0009106.
- Cibils C., Rosso M., Algebres des chemins quantiques,
Adv. Math. 125 (1997), 171-199.
- Drinfel'd V.G., Quantum groups, in Proceedings International
Congress of Mathematicians (August 3-11, 1986, Berkeley, CA), Amer. Math. Soc., Providence, RI, 1987, 798-820.
- Dascalescu S., Nastasescu C., Raianu S., Hopf algebras:
an introduction, Marcel Dekker Inc., 2001.
- Doi Y., Takeuchi M., Multiplication alteration by two-cocycles
- the quantum version, Comm. Algebra 22 (1994), 5715-5732.
- Jantzen J.C., Lectures on quantum groups,
Graduate Studies in Mathematics, Vol. 6, Amer. Math. Soc.,
Providence, RI, 1996.
- Majid S., Algebras and Hopf algebras in braided categories,
in Advances in Hopf Algebras (1992, Chicago, IL),
Lecture Notes in Pure and Appl. Math., Vol. 158, Marcel Dekker, New
York, 1994, 55-105.
- Montgomery S., Hopf algebras and their actions on rings,
CBMS Regional Conference Series in Mathematics, Vol. 82, Amer. Math. Soc., Providence, RI, 1993.
- Nichols W., Bialgebras of type one,
Comm. Algebra 6 (1978), 1521-1552.
- Lusztig G., Introduction to quantum groups,
Progress in Mathematics, Vol. 110, Birkhäuser, Boston, MA, 1993.
- Kassel C., Quantum groups, Graduate Texts in Mathematics, Vol. 155, Springer-Verlag, New York, 1995.
- Sweedler M.E., Hopf algebras, Benjamin, New York, 1969.
- Yang C.N., Ge M.L. (Editors),
Braid group, knot theory and statistical mechanics, World Scientific, Singapore, 1989.
- Zhang S., Chen H.-X., The double bicrossproducts
in braided tensor categories, Comm. Algebra 29 (2001),
31-66.
|
|