|
SIGMA 4 (2008), 043, 16 pages arXiv:0805.1687
https://doi.org/10.3842/SIGMA.2008.043
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics
Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems
Dieter Schuch
Institut für Theoretische Physik, J.W. Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
Received December 28, 2007, in final form May 07,
2008; Published online May 12, 2008
Abstract
The time-evolution of the maximum and the width of exact analytic
wave packet (WP) solutions of the time-dependent Schrödinger equation (SE)
represents the particle and wave aspects, respectively, of the quantum system. The dynamics
of the maximum, located at the mean value of position, is governed by
the Newtonian equation of the corresponding classical problem. The width, which
is directly proportional to the position uncertainty, obeys a complex
nonlinear Riccati equation which can be transformed into a real nonlinear
Ermakov equation. The coupled pair of these equations yields a
dynamical invariant which plays a key role in our investigation. It can be
expressed in terms of a complex variable that linearizes the Riccati
equation. This variable also provides the time-dependent parameters that
characterize the Green's function, or Feynman kernel, of the corresponding
problem. From there, also the relation between the classical and quantum
dynamics of the systems can be obtained. Furthermore, the close connection
between the Ermakov invariant and the Wigner function will be
shown. Factorization of the dynamical
invariant allows for comparison with creation/annihilation operators and
supersymmetry where the partner potentials fulfil (real) Riccati
equations. This provides the link to a nonlinear formulation of
time-independent quantum mechanics in terms of an Ermakov equation for the
amplitude of the stationary state wave functions combined with a conservation
law. Comparison with SUSY and the time-dependent problems concludes our analysis.
Key words:
Riccati equation; Ermakov invariant; wave packet dynamics; nonlinear quantum mechanics.
pdf (281 kb)
ps (189 kb)
tex (20 kb)
References
- Schrödinger E., Quantisierung als Eigenwertproblem, Ann. Phys. 79 (1926), 361-376.
- Reinisch G., Nonlinear quantum mechanics, Phys. A 206 (1994), 229-252.
Reinisch G., Classical position probability distribution in stationary and
separable quantum systems, Phys. Rev. A 56 (1997), 3409-3416.
- Ermakov V.P., Second-order differential equations, Conditions of
complete integrability, Univ. Izv. Kiev 20 (1880), no. 9, 1-25.
- Milne W.E., The numerical determination of characteristic numbers, Phys. Rev. 35 (1930), 863-867.
Pinney E., The nonlinear differential equation y" + p(x)y + cy-3 = 0, Proc. Amer. Math. Soc. 1 (1950), 681.
Lewis H.R., Classical and quantum systems with time-dependent
harmonic-oscillator-type Hamiltonians, Phys. Rev. Lett. 18 (1967), 510-512.
- Lutzky M., Noether's theorem and the time-dependent harmonic oscillator, Phys. Lett. A 68 (1979), 3-4.
Ray J.R., Reid J.L., More exact invariants for the time-dependent harmonic oscillator, Phys. Lett. A 71 (1979), 317-318.
- Malkin I.A., Man'ko V.I., Trifonov D.A., Linear adiabatic
invariants and coherent states, J. Math. Phys.
14 (1973), 576-582.
Markov M.A. (Editor), Invariants and evolution of nonstationary quantum systems,
Proceedings of the Lebedev Physical Institute, Vol. 183, Nova Science, New
York, 1989.
- Feynman R.P., Hibbs A.R., Quantum mechanics and path
integrals, McGraw-Hill, New York, 1965.
- Schleich W.P., Quantum optics in phase space, Wiley-VCh, Berlin, Chapter 17, 2001.
- Schuch D., Moshinsky M., Connection between quantum-mechanical
and classical time evolution via a dynamical invariant, Phys. Rev. A 73 (2006),
062111, 10 pages.
Schuch D., Connection between quantum-mechanical
and classical time evolution of certain dissipative systems via a dynamical
invariant, J. Math. Phys. 48 (2007), 122701, 19 pages.
- Wigner E.P., On the quantum correction for thermodynamical equilibrium, Phys. Rev. 40 (1932), 749-759.
Hillery M. O'Connell R.F., Scully M.O., Wigner E.P., Distribution functions
in physics: fundamentals, Phys. Rep.
106 (1984), 121-167.
- Schuch D., On the relation between the Wigner function and an
exact dynamical invariant, Phys. Lett. A 338 (2005), 225-231.
- Lewis H.R., Riesenfeld W.B., An exact quantum theory of the
time-dependent harmonic oscillator and of a charged particle in a
time-dependent electromagnetic field, J. Math. Phys. 10
(1969), 1458-1473.
Hartley J.G., Ray J.R., Ermakov systems and quantum-mechanical
superposition law, Phys. Rev. A 24 (1981), 2873-2876.
- Cooper F., Khare A., Sukhatme U., Supersymmetry in Quantum
Mechanics, World Scientific, Singapore, 2001.
Kalka H., Soff G., Supersymmetrie, Teubner, Stuttgart, 1997.
- Madelung E., Quantentheorie in hydrodynamischer Form, Z. Phys. 40 (1926), 322-326.
- Lee R.A., Quantum ray equations, J. Phys. A: Math. Gen. 15 (1982), 2761-2774.
- Kaushal R.S., Quantum analogue of Ermakov systems and the phase
of the quantum wave function, Intern. J. Theoret. Phys. 40 (2001), 835-847.
- Korsch H.J., Laurent H., Milne's differential equation and
numerical solutions of the Schrödinger equation. I. Bound-state energies for
single- and double minimum potentials, J. Phys. B: At. Mol. Phys. 14 (1981), 4213-4230.
Korsch H.J., Laurent H. and Mohlenkamp, Milne's differential equation and
numerical solutions of the Schrödinger equation. II. Complex energy
resonance states, J. Phys. B: At. Mol. Phys. 15 (1982), 1-15.
- Schuch D., Relations between wave and particle aspects for motion in a magnetic field, in New Challenges in Computational Quantum Chemistry,
Editors R. Broer, P.J.C. Aerts and P.S. Bagus, University of Groningen, 1994,
255-269.
Maamache M. Bounames A., Ferkous N., Comment on "Wave function of a
time-dependent harmonic oscillator in a static magnetic field", Phys. Rev. A 73 (2006),
016101, 3 pages.
- Ray J.R., Time-dependent invariants with applications in physics, Lett. Nuovo Cim. 27 (1980), 424-428.
Sarlet W., Class of Hamiltonians with one degree-of-freedom allowing
applications of Kruskal's asymptotic theory in closed form. II, Ann. Phys. (N.Y.) 92 (1975), 248-261.
- Lewis H.R., Leach P.G.L., Exact invariants for a class of
time-dependent nonlinear Hamiltonian systems, J. Math. Phys. 23
(1982), 165-175.
- Sebawa Abdalla M., Leach P.G.L., Linear and quadratic
invariants for the transformed Tavis-Cummings model, J. Phys. A: Math. Gen. 36 (2003), 12205-12221.
Sebawa Abdalla M., Leach P.G.L., Wigner functions for time-dependent
coupled linear oscillators via linear and quadratic invariant processes, J. Phys. A: Math. Gen. 38 (2005), 881-893.
- Kaushal R.S., Classical and quantum mechanics of noncentral
potentials. A survey of 2D systems, Springer, Heidelberg, 1998.
|
|