|
SIGMA 4 (2008), 048, 19 pages arXiv:0805.4725
https://doi.org/10.3842/SIGMA.2008.048
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics
Solvable Two-Body Dirac Equation as a Potential Model of Light Mesons
Askold Duviryak
Institute for Condensed Matter Physics of National Academy of Sciences of Ukraine, 1 Svientsitskii Str., UA-79011
Lviv, Ukraine
Received October 29, 2007, in final form May 07, 2008; Published online May 30, 2008
Abstract
The two-body Dirac equation with general local potential
is reduced to the pair of ordinary second-order differential
equations for radial components of a wave function. The class of
linear + Coulomb potentials with complicated spin-angular
structure is found, for which the equation is exactly solvable. On
this ground a relativistic potential model of light mesons is
constructed and the mass spectrum is calculated. It is compared
with experimental data.
Key words:
two body Dirac equation; Dirac oscillator; solvable model; Regge trajectories.
pdf (644 kb)
ps (345 kb)
tex (467 kb)
References
- Kim Y.S., Noz M.E., Covariant harmonic oscillator and the quark
model, Phys. Rev. D 8 (1973), 3521-3527.
- Takabayasi T., Relativistic mechanics of confined particles as
extended model of hadrons, Progr. Theoret. Phys. Suppl.
67 (1979), 1-68.
- Ishida S., Oda M., A universal spring and meson orbital Regge
trajectories, Nuovo Cimento A 107 (1994), 2519-2525.
- Barut A.O., Komy S., Derivation of nonperturbative relativistic
two-body equation from the action principle in quantum
electrodynamics, Fortschr. Phys. 33 (1985), 309-318.
- Barut A.O., Ünal N., A new approach to bound-state quantum
electrodynamics, Phys. A 142 (1987), 467-487.
- Grandy W.T. Jr., Relativistic quantum mechanics of leptons and
fields, Kluwer Academic Publishers, Dordrecht - Boston -
London, 1991.
- Duviryak A., Large-j expansion method for two-body Dirac
equation, SIGMA 2 (2006), 029, 12 pages,
math-ph/0602066.
- Breit G., The effect of retardation on the interaction of two
electrons, Phys. Rev. 34 (1929), 553-573.
- Bethe H.A., Salpeter E.E., Quantum mechanics of one- and
two-electron atoms, Springer-Verlag, Berlin - Göttingen -
Heidelberg, 1957.
- Sazdjian H., Relativistic wave equations for the dynamics of two
interacting particles, Phys. Rev. D 33 (1986),
3401-3424.
- Mourad J., Sazdjian H., The two-fermion relativistic wave
equations of constraint theory in the Pauli-Schrödinger form,
J. Math. Phys. 35 (1994), 6379-6406,
hep-ph/9403232.
- Mourad J., Sazdjian H., How to obtain a covariant Breit type
equation from relativistic constraint theory, J. Phys. G
21 (1995),
267-279, hep-ph/9412261.
- Crater H.W., Van Alstine P., Two-body Dirac equations for
particles interacting through world scalar and vector potentials,
Phys. Rev. D 36 (1987), 3007-3035.
- Crater H.W., Van Alstine P., Extension of two-body Dirac equations
to general covariant interactions through a hyperbolic
transformation, J. Math. Phys. 31 (1990),
1998-2014.
- Crater H.W., Van Alstine P., Two-body Dirac equations for
relativistic bound states of quantum field theory,
hep-ph/9912386.
- Krolikowski W., Relativistic radial equations for 2 spin-1/2
particles with a static interaction, Acta Phys. Polon. B
7 (1976), 487-496.
- McClary R., Byers N., Relativistic effects in heavy-quarkonium
spectroscopy, Phys. Rev. D 28 (1983), 1692-1705.
- Crater H.W., Van Alstine P., Relativistic naive quark model for
spining quarks in mesons, Phys. Rev. Lett. 53 (1984),
1527-1530.
- Crater H.W., Van Alstine P., Relativistic constraint dynamics for
spining quarks in mesons, in Constraint's Theory and Relativistic
Dynamics, Editors G. Longhi and L. Lusanna, World Scientific
Publ., Singapore, 1987, 210-241.
- Childers R.W., Effective Hamiltonians for generalized Breit
interactions in QCD, Phys. Rev. D 36 (1987), 606-614.
- Brayshaw D.D., Relativistic description of quarkonium, Phys.
Rev. D 36 (1987), 1465-1478.
- Ceuleneer R., Legros P., Semay C., On the connection between
relativistic and nonrelativistic description of quarkonium,
Nuclear Phys. A 532 (1991), 395-400.
- Semay C., Ceuleneer R., Silvestre-Brac B., Two-body Dirac equation
with diagonal central potentials, J. Math. Phys. 34
(1993), 2215-2225.
- Semay C., Ceuleneer R., Two-body Dirac equation and Regge
trajectories, Phys. Rev. D 48 (1993), 4361-4369.
- Tsibidis G.D., Quark-antiquark bound states and the Breit
equation, Acta Phys. Polon. B 35 (2004), 2329-2366,
hep-ph/0007143.
- Moshinsky M., Nikitin A.G., The many body problem in relativistic
quantum mechanics, Rev. Mexicana de Fís. 50 (2005),
66-73,
hep-ph/0502028.
- Crater H.W., Van Alstine P., Relativistic calculation of the meson
spectrum: a fully covariant treatment versus standard treatments,
Phys. Rev. D 70 (2004), 034026, 31 pages,
hep-ph/0208186.
- Duviryak A., Application of two-body Dirac equation in meson
spectroscopy, J. Phys. Stud. 10 (2006), 290-314 (in
Ukrainian).
- Sazdjian H., Relativistic quarkonium dynamics, Phys. Rev. D
33 (1986), 3425-3434.
- Sazdjian H., Supersymmetric models in two-particle relativistic
quantum mechanics, Eur. Lett. 6 (1988), 13-18.
- Moshinsky M., Loyola G., Villegas C., Anomalous basis for
representations of the Poincaré group, J. Math. Phys.
32 (1991) 32, 373-381.
- Moshinsky M., Del Sol Mesa A., Relations between different
approaches to the relativistic two-body problem, J. Phys. A:
Math. Gen. 27 (1994), 4684-4693.
- Moshinsky M., Quesne C., Smirnov Yu.F., Supersymmetry and
superalgebra for the two-body system with a Dirac oscillator
interaction, J. Phys. A: Math. Gen. 28 (1995),
6447-6457,
hep-th/9510006.
- Nikitin A.G., Fushchich W. I., Non-Lie integrals of the motion for
particles of arbitrary spin and for systems of interacting
particles, Teoret. Mat. Fiz. 88 (1991), 406-515
(English transl.: Theoret. and Math. Phys. 88 (1991),
960-967).
- Darewych J.W., Duviryak A., Exact few-particle eigenstates in
partially reduced QED, Phys. Rev. A 66 (2002), 032102,
20 pages,
nucl-th/0204006.
- Chraplyvy Z.V., Reduction of relativistic two-particle wave
equations to approximate forms. I, Phys. Rev. 91
(1953), 388-391.
- Messiah A., Quantum mechanics, Vol. 2, Willey, New York, 1961.
- Berdnikov E.B., Pronko G.P., Relativistic model of orbital
excitations of mesons, J. Nuclear Phys. 54 (1991),
763-776.
- Goebel C., LaCourse D., Olsson M.G., Systematics of some
ultrarelativistic potential models, Phys. Rev. D 41
(1990), 2917-2923.
- Simonov Yu.A., Ideas in nonperturbative QCD, Nuovo Cimento A
107 (1994), 2629-2644,
hep-ph/9311217.
- Khruschev V.V., Mass formula for mesons containing light quarks,
Preprint IHEP 87-9, Serpukhov, 1987.
- Duviryak A., The two-particle time-asymmetric relativistic model
with confinement interaction and quantization, Internat. J.
Modern Phys. A 16 (2001), 2771-2788.
- Inopin A., Sharov G.S., Hadronic Regge trajectories: problems and
approaches, Phys. Rev. D 63 (2001), 054023, 10 pages,
hep-ph/9905499.
- Borodulin V.I., Plyushchay M.S., Pron'ko G.P., Relativistic string
model of light mesons with massless quarks, Z.
Phys. C 41 (1988), 293-302.
- Ishida S., Yamada K., Light-quark meson spectrum in the covariant
oscillator quark model with one-gluon-exchange effects,
Phys. Rev. D 35 (1987), 265-281.
- Yao W.-M. et al., The review of particle physics, J. Phys. G
33 (2006), 1-1232.
|
|