Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 4 (2008), 048, 19 pages      arXiv:0805.4725      https://doi.org/10.3842/SIGMA.2008.048
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics

Solvable Two-Body Dirac Equation as a Potential Model of Light Mesons

Askold Duviryak
Institute for Condensed Matter Physics of National Academy of Sciences of Ukraine, 1 Svientsitskii Str., UA-79011 Lviv, Ukraine

Received October 29, 2007, in final form May 07, 2008; Published online May 30, 2008

Abstract
The two-body Dirac equation with general local potential is reduced to the pair of ordinary second-order differential equations for radial components of a wave function. The class of linear + Coulomb potentials with complicated spin-angular structure is found, for which the equation is exactly solvable. On this ground a relativistic potential model of light mesons is constructed and the mass spectrum is calculated. It is compared with experimental data.

Key words: two body Dirac equation; Dirac oscillator; solvable model; Regge trajectories.

pdf (644 kb)   ps (345 kb)   tex (467 kb)

References

  1. Kim Y.S., Noz M.E., Covariant harmonic oscillator and the quark model, Phys. Rev. D 8 (1973), 3521-3527.
  2. Takabayasi T., Relativistic mechanics of confined particles as extended model of hadrons, Progr. Theoret. Phys. Suppl. 67 (1979), 1-68.
  3. Ishida S., Oda M., A universal spring and meson orbital Regge trajectories, Nuovo Cimento A 107 (1994), 2519-2525.
  4. Barut A.O., Komy S., Derivation of nonperturbative relativistic two-body equation from the action principle in quantum electrodynamics, Fortschr. Phys. 33 (1985), 309-318.
  5. Barut A.O., Ünal N., A new approach to bound-state quantum electrodynamics, Phys. A 142 (1987), 467-487.
  6. Grandy W.T. Jr., Relativistic quantum mechanics of leptons and fields, Kluwer Academic Publishers, Dordrecht - Boston - London, 1991.
  7. Duviryak A., Large-j expansion method for two-body Dirac equation, SIGMA 2 (2006), 029, 12 pages, math-ph/0602066.
  8. Breit G., The effect of retardation on the interaction of two electrons, Phys. Rev. 34 (1929), 553-573.
  9. Bethe H.A., Salpeter E.E., Quantum mechanics of one- and two-electron atoms, Springer-Verlag, Berlin - Göttingen - Heidelberg, 1957.
  10. Sazdjian H., Relativistic wave equations for the dynamics of two interacting particles, Phys. Rev. D 33 (1986), 3401-3424.
  11. Mourad J., Sazdjian H., The two-fermion relativistic wave equations of constraint theory in the Pauli-Schrödinger form, J. Math. Phys. 35 (1994), 6379-6406, hep-ph/9403232.
  12. Mourad J., Sazdjian H., How to obtain a covariant Breit type equation from relativistic constraint theory, J. Phys. G 21 (1995), 267-279, hep-ph/9412261.
  13. Crater H.W., Van Alstine P., Two-body Dirac equations for particles interacting through world scalar and vector potentials, Phys. Rev. D 36 (1987), 3007-3035.
  14. Crater H.W., Van Alstine P., Extension of two-body Dirac equations to general covariant interactions through a hyperbolic transformation, J. Math. Phys. 31 (1990), 1998-2014.
  15. Crater H.W., Van Alstine P., Two-body Dirac equations for relativistic bound states of quantum field theory, hep-ph/9912386.
  16. Krolikowski W., Relativistic radial equations for 2 spin-1/2 particles with a static interaction, Acta Phys. Polon. B 7 (1976), 487-496.
  17. McClary R., Byers N., Relativistic effects in heavy-quarkonium spectroscopy, Phys. Rev. D 28 (1983), 1692-1705.
  18. Crater H.W., Van Alstine P., Relativistic naive quark model for spining quarks in mesons, Phys. Rev. Lett. 53 (1984), 1527-1530.
  19. Crater H.W., Van Alstine P., Relativistic constraint dynamics for spining quarks in mesons, in Constraint's Theory and Relativistic Dynamics, Editors G. Longhi and L. Lusanna, World Scientific Publ., Singapore, 1987, 210-241.
  20. Childers R.W., Effective Hamiltonians for generalized Breit interactions in QCD, Phys. Rev. D 36 (1987), 606-614.
  21. Brayshaw D.D., Relativistic description of quarkonium, Phys. Rev. D 36 (1987), 1465-1478.
  22. Ceuleneer R., Legros P., Semay C., On the connection between relativistic and nonrelativistic description of quarkonium, Nuclear Phys. A 532 (1991), 395-400.
  23. Semay C., Ceuleneer R., Silvestre-Brac B., Two-body Dirac equation with diagonal central potentials, J. Math. Phys. 34 (1993), 2215-2225.
  24. Semay C., Ceuleneer R., Two-body Dirac equation and Regge trajectories, Phys. Rev. D 48 (1993), 4361-4369.
  25. Tsibidis G.D., Quark-antiquark bound states and the Breit equation, Acta Phys. Polon. B 35 (2004), 2329-2366, hep-ph/0007143.
  26. Moshinsky M., Nikitin A.G., The many body problem in relativistic quantum mechanics, Rev. Mexicana de Fís. 50 (2005), 66-73, hep-ph/0502028.
  27. Crater H.W., Van Alstine P., Relativistic calculation of the meson spectrum: a fully covariant treatment versus standard treatments, Phys. Rev. D 70 (2004), 034026, 31 pages, hep-ph/0208186.
  28. Duviryak A., Application of two-body Dirac equation in meson spectroscopy, J. Phys. Stud. 10 (2006), 290-314 (in Ukrainian).
  29. Sazdjian H., Relativistic quarkonium dynamics, Phys. Rev. D 33 (1986), 3425-3434.
  30. Sazdjian H., Supersymmetric models in two-particle relativistic quantum mechanics, Eur. Lett. 6 (1988), 13-18.
  31. Moshinsky M., Loyola G., Villegas C., Anomalous basis for representations of the Poincaré group, J. Math. Phys. 32 (1991) 32, 373-381.
  32. Moshinsky M., Del Sol Mesa A., Relations between different approaches to the relativistic two-body problem, J. Phys. A: Math. Gen. 27 (1994), 4684-4693.
  33. Moshinsky M., Quesne C., Smirnov Yu.F., Supersymmetry and superalgebra for the two-body system with a Dirac oscillator interaction, J. Phys. A: Math. Gen. 28 (1995), 6447-6457, hep-th/9510006.
  34. Nikitin A.G., Fushchich W. I., Non-Lie integrals of the motion for particles of arbitrary spin and for systems of interacting particles, Teoret. Mat. Fiz. 88 (1991), 406-515 (English transl.: Theoret. and Math. Phys. 88 (1991), 960-967).
  35. Darewych J.W., Duviryak A., Exact few-particle eigenstates in partially reduced QED, Phys. Rev. A 66 (2002), 032102, 20 pages, nucl-th/0204006.
  36. Chraplyvy Z.V., Reduction of relativistic two-particle wave equations to approximate forms. I, Phys. Rev. 91 (1953), 388-391.
  37. Messiah A., Quantum mechanics, Vol. 2, Willey, New York, 1961.
  38. Berdnikov E.B., Pronko G.P., Relativistic model of orbital excitations of mesons, J. Nuclear Phys. 54 (1991), 763-776.
  39. Goebel C., LaCourse D., Olsson M.G., Systematics of some ultrarelativistic potential models, Phys. Rev. D 41 (1990), 2917-2923.
  40. Simonov Yu.A., Ideas in nonperturbative QCD, Nuovo Cimento A 107 (1994), 2629-2644, hep-ph/9311217.
  41. Khruschev V.V., Mass formula for mesons containing light quarks, Preprint IHEP 87-9, Serpukhov, 1987.
  42. Duviryak A., The two-particle time-asymmetric relativistic model with confinement interaction and quantization, Internat. J. Modern Phys. A 16 (2001), 2771-2788.
  43. Inopin A., Sharov G.S., Hadronic Regge trajectories: problems and approaches, Phys. Rev. D 63 (2001), 054023, 10 pages, hep-ph/9905499.
  44. Borodulin V.I., Plyushchay M.S., Pron'ko G.P., Relativistic string model of light mesons with massless quarks, Z. Phys. C 41 (1988), 293-302.
  45. Ishida S., Yamada K., Light-quark meson spectrum in the covariant oscillator quark model with one-gluon-exchange effects, Phys. Rev. D 35 (1987), 265-281.
  46. Yao W.-M. et al., The review of particle physics, J. Phys. G 33 (2006), 1-1232.


Previous article   Next article   Contents of Volume 4 (2008)