|  | SIGMA 4 (2008), 051, 9 pages      arXiv:0806.1466     
https://doi.org/10.3842/SIGMA.2008.051 Quantum Painlevé Equations: from Continuous to Discrete
Hajime Nagoya a, Basil Grammaticos b and Alfred Ramani c
a) Graduate School of Mathematical Sciences, The
University of Tokyo, Japan
 b) IMNC, Université Paris VII & XI, CNRS, UMR
8165, Bât. 104, 91406 Orsay, France
 c) Centre de Physique Théorique, Ecole
Polytechnique, CNRS, 91128 Palaiseau, France
 Received March 05, 2008, in final form May 03,
2008; Published online June 09, 2008 Abstract
We examine quantum extensions of the continuous
Painlevé equations, expressed as systems of first-order
differential equations for non-commuting objects. We focus on
the Painlevé equations II, IV and V. From their auto-Bäcklund
transformations we derive the contiguity relations which we
interpret as the quantum analogues of the discrete Painlevé
equations.
 Key words:
discrete systems; quantization; Painlevé equations. 
pdf (190 kb)  
ps (138 kb)  
tex (12 kb)
 
 References
 
Fokas A., Grammaticos B., Ramani A., From continuous to discrete
  Painlevé equations, J. Math. Anal. Appl. 180 (1993), 342-360.Grammaticos B., Nijhoff F.W., Papageorgiou V., Ramani A.,  Satsuma J., Linearization and solutions of the discrete Painlevé III equation, Phys. Lett. A 185 (1994), 446-452, solv-int/9310003.Grammaticos B.,  Ramani A.,  Papageorgiou V., Discrete dressing transformations and Painlevé equations, Phys. Lett. A 235 (1997), 475-479.Grammaticos B.,  Ramani A.,  Papageorgiou V.,  Nijhoff  F.,
Quantization and integrability of discrete systems,  J. Phys.
A: Math. Gen. 25 (1992), 6419-6427.Grammaticos B., Ramani A., From continuous Painlevé IV to the
asymmetric discrete Painlevé I,  J. Phys. A: Math. Gen.
31 (1998), 5787-5798.Hietarinta J., Classical versus quantum integrability, J. Math. Phys. 25 (1984), 1833-1840.Hietarinta J.,  Grammaticos B., On the h2-correction terms in quantum integrability,  J. Phys. A: Math. Gen. 22 (1989), 1315-1322.Jimbo M., Miwa T.,
Monodromy preserving deformation of linear ordinary differential
   equations with rational coefficients. II,
 Phys. D 2 (1981), 407-448.Nagoya H.,
Quantum Painlevé systems of type Al(1), Internat. J.
Math. 15 (2004), 1007-1031,
math.QA/0402281.Nagoya H.,
 Quantum Painlevé systems of type An-1(1) with higher degree
Lax operators, Internat. J. Math. 18 (2007),
839-868.Noumi M., Yamada Y., Higher order Painlevé equations of type Al(1),  Funkcial. Ekvac. 41 (1998), 483-503,
 math.QA/9808003.Novikov S.P., Quantization of finite-gap potentials and a nonlinear
    quasiclassical approximation that arises in nonperturbative
    string theory, Funct. Anal. Appl. 24 (1990), 296-306.Quispel G.R.W.,  Nijhoff F.W., Integrable two-dimensional
quantum
    mappings, Phys. Lett. A 161 (1992), 419-422.Quispel G.R.W.,  Roberts J.A.G.,  Thompson C.J., Integrable mappings and soliton equations. II, Phys. D 34 (1989), 183-192.Ramani A.,  Willox R.,  Grammaticos B.,  Carstea A.S.,  Satsuma J.,
Limits and degeneracies of discrete Painlevé equations: a
sequel, Phys. A 347 (2005), 1-16.Ramani A., Tamizhmani T., Grammaticos B., Tamizhmani K.M., The
extension of integrable mappings to non-commuting variables, 
J. Nonlinear Math. Phys. 10 (2003),  suppl. 2, 149-165. |  |