|
SIGMA 4 (2008), 051, 9 pages arXiv:0806.1466
https://doi.org/10.3842/SIGMA.2008.051
Quantum Painlevé Equations: from Continuous to Discrete
Hajime Nagoya a, Basil Grammaticos b and Alfred Ramani c
a) Graduate School of Mathematical Sciences, The
University of Tokyo, Japan
b) IMNC, Université Paris VII & XI, CNRS, UMR
8165, Bât. 104, 91406 Orsay, France
c) Centre de Physique Théorique, Ecole
Polytechnique, CNRS, 91128 Palaiseau, France
Received March 05, 2008, in final form May 03,
2008; Published online June 09, 2008
Abstract
We examine quantum extensions of the continuous
Painlevé equations, expressed as systems of first-order
differential equations for non-commuting objects. We focus on
the Painlevé equations II, IV and V. From their auto-Bäcklund
transformations we derive the contiguity relations which we
interpret as the quantum analogues of the discrete Painlevé
equations.
Key words:
discrete systems; quantization; Painlevé equations.
pdf (190 kb)
ps (138 kb)
tex (12 kb)
References
- Fokas A., Grammaticos B., Ramani A., From continuous to discrete
Painlevé equations, J. Math. Anal. Appl. 180 (1993), 342-360.
- Grammaticos B., Nijhoff F.W., Papageorgiou V., Ramani A., Satsuma J., Linearization and solutions of the discrete Painlevé III equation, Phys. Lett. A 185 (1994), 446-452, solv-int/9310003.
- Grammaticos B., Ramani A., Papageorgiou V., Discrete dressing transformations and Painlevé equations, Phys. Lett. A 235 (1997), 475-479.
- Grammaticos B., Ramani A., Papageorgiou V., Nijhoff F.,
Quantization and integrability of discrete systems, J. Phys.
A: Math. Gen. 25 (1992), 6419-6427.
- Grammaticos B., Ramani A., From continuous Painlevé IV to the
asymmetric discrete Painlevé I, J. Phys. A: Math. Gen.
31 (1998), 5787-5798.
- Hietarinta J., Classical versus quantum integrability, J. Math. Phys. 25 (1984), 1833-1840.
- Hietarinta J., Grammaticos B., On the h2-correction terms in quantum integrability, J. Phys. A: Math. Gen. 22 (1989), 1315-1322.
- Jimbo M., Miwa T.,
Monodromy preserving deformation of linear ordinary differential
equations with rational coefficients. II,
Phys. D 2 (1981), 407-448.
- Nagoya H.,
Quantum Painlevé systems of type Al(1), Internat. J.
Math. 15 (2004), 1007-1031,
math.QA/0402281.
- Nagoya H.,
Quantum Painlevé systems of type An-1(1) with higher degree
Lax operators, Internat. J. Math. 18 (2007),
839-868.
- Noumi M., Yamada Y., Higher order Painlevé equations of type Al(1), Funkcial. Ekvac. 41 (1998), 483-503,
math.QA/9808003.
- Novikov S.P., Quantization of finite-gap potentials and a nonlinear
quasiclassical approximation that arises in nonperturbative
string theory, Funct. Anal. Appl. 24 (1990), 296-306.
- Quispel G.R.W., Nijhoff F.W., Integrable two-dimensional
quantum
mappings, Phys. Lett. A 161 (1992), 419-422.
- Quispel G.R.W., Roberts J.A.G., Thompson C.J., Integrable mappings and soliton equations. II, Phys. D 34 (1989), 183-192.
- Ramani A., Willox R., Grammaticos B., Carstea A.S., Satsuma J.,
Limits and degeneracies of discrete Painlevé equations: a
sequel, Phys. A 347 (2005), 1-16.
- Ramani A., Tamizhmani T., Grammaticos B., Tamizhmani K.M., The
extension of integrable mappings to non-commuting variables,
J. Nonlinear Math. Phys. 10 (2003), suppl. 2, 149-165.
|
|