Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 4 (2008), 068, 33 pages      arXiv:0806.2337      https://doi.org/10.3842/SIGMA.2008.068
Contribution to the Special Issue on Kac-Moody Algebras and Applications

Wall Crossing, Discrete Attractor Flow and Borcherds Algebra

Miranda C.N. Cheng a and Erik P. Verlinde b
a) Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02128, USA
b) Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE, Amsterdam, the Netherlands

Received July 01, 2008, in final form September 23, 2008; Published online October 07, 2008

Abstract
The appearance of a generalized (or Borcherds-) Kac-Moody algebra in the spectrum of BPS dyons in N=4, d=4 string theory is elucidated. From the low-energy supergravity analysis, we identify its root lattice as the lattice of the T-duality invariants of the dyonic charges, the symmetry group of the root system as the extended S-duality group PGL(2,Z) of the theory, and the walls of Weyl chambers as the walls of marginal stability for the relevant two-centered solutions. This leads to an interpretation for the Weyl group as the group of wall-crossing, or the group of discrete attractor flows. Furthermore we propose an equivalence between a ''second-quantized multiplicity'' of a charge- and moduli-dependent highest weight vector and the dyon degeneracy, and show that the wall-crossing formula following from our proposal agrees with the wall-crossing formula obtained from the supergravity analysis. This can be thought of as providing a microscopic derivation of the wall-crossing formula of this theory.

Key words: generalized Kac-Moody algebra; black hole; dyons.

pdf (737 kb)   ps (1133 kb)   tex (1198 kb)

References

  1. Harvey J.A., Moore G.W., Algebras, BPS states, and strings, Nuclear Phys. B 463 (1996), 315-368, hep-th/9510182.
  2. Harvey J.A., Moore G.W., On the algebras of BPS states, Comm. Math. Phys. 197 (1998), 489-519, hep-th/9609017.
  3. Denef F., Moore G.W., Split states, entropy enigmas, holes and halos, hep-th/0702146.
  4. Diaconescu E., Moore G.W., Crossing the wall: branes vs. bundles, arXiv:0706.3193.
  5. Kontsevich M., Talk in Paris workshop on Black Holes, Black Rings and Modular Forms 17 (August 2007).
    Kontsevich M., Soibelman Y., Work in progress.
  6. Dijkgraaf R., Verlinde E.P., Verlinde H.L., Counting dyons in N=4 string theory, Nuclear Phys. B 484 (1997), 543-561, hep-th/9607026.
  7. Kawai T., N=2 heterotic string threshold correction, K3 surface and generalized Kac-Moody superalgebra, Phys. Lett. B 372 (1996), 59-64, hep-th/9512046.
  8. Gritsenko V., Nikulin V., Siegel automorphic form correction of some Lorentzian Kac-Moody Lie algebras, Amer. J. Math. 119 (1997), 181-224, alg-geom/9504006.
  9. Sen A., Walls of marginal stability and dyon spectrum in N=4 supersymmetric string theories, J. High Energy Phys. 2007 (2007), no. 5, 039, 33 pages, hep-th/0702141.
  10. Dabholkar A., Gaiotto D., Nampuri S., Comments on the spectrum of CHL dyons, J. High Energy Phys. 2008 (2008), no. 1, 023, 23 pages, hep-th/0702150.
  11. Cheng M.C.N., Verlinde E., Dying dyons don't count, J. High Energy Phys. 2007 (2007), no. 9, 070, 21 pages, arXiv:0706.2363.
  12. Sen A., Rare decay modes of quarter BPS dyons, J. High Energy Phys. 2007 (2007), no. 10, 059, 8 pages, arXiv:0707.1563.
  13. Dabholkar A., Gomes J., Murthy S., Counting all dyons in N=4 string theory, arXiv:0803.2692.
  14. Sen A., Two centered black holes and N=4 dyon spectrum, J. High Energy Phys. 2007 (2007), no. 9, 045, 11 pages, arXiv:0705.3874.
    Sen A., Wall crossing formula for N=4 dyons: a macroscopic derivation, arXiv:0803.3857.
  15. Shih D., Strominger A., Yin X., Recounting dyons in N=4 string theory, J. High Energy Phys. 2006 (2006), no. 10, 087, 5 pages, hep-th/0505094.
  16. David J.R., Sen A., CHL dyons and statistical entropy function from D1-D5 system, J. High Energy Phys. 2006 (2006), no. 11, 072, 40 pages, hep-th/0605210.
  17. Cvetic M., Tseytlin A.A., Solitonic strings and BPS saturated dyonic black holes, Phys. Rev. D 53 (1996), 5619-5633, Erratum, Phys. Rev. D 55 (1997), 3907, hep-th/9512031.
    Cvetic M., Youm D., Dyonic BPS saturated black holes of heterotic string on a six torus, Phys. Rev. D 53 (1996), R584-R588, hep-th/9507090.
  18. Damour T., Henneaux M., Nicolai H., Cosmological billiards, Classical Quantum Gravity 20 (2003), R145-R200, hep-th/0212256.
  19. Henneaux M., Persson D., Spindel P., Spacelike singularities and hidden symmetries of gravity, Living Rev. Relativity 11 (2008), lrr-2008-1, 232 pages, arXiv:0710.1818.
  20. Ferrara S., Kallosh R., Strominger A., N=2 extremal black holes, Phys. Rev. D 52 (1995), R5412-R5416, hep-th/9508072.
  21. Mohaupt T., Black hole entropy, special geometry and strings, Fortsch. Phys. 49 (2001), 3-161, hep-th/0007195.
  22. Maldacena J.M., Moore G.W., Strominger A., Counting BPS black holes in toroidal type II string theory, hep-th/9903163.
  23. Banerjee S., Sen A., S-duality action on discrete T-duality invariants, J. High Energy Phys. 2008 (2008), no. 4, 012, 8 pages, arXiv:0801.0149.
    Banerjee S., Sen A., Srivastava Y.K., Generalities of quarter BPS dyon partition function and dyons of torsion two, J. High Energy Phys. 2008 (2008), no. 5, 101, 54 pages, arXiv:0802.0544.
    Banerjee S., Sen A., Srivastava Y.K., Partition functions of torsion >1 dyons in heterotic string theory on T6, J. High Energy Phys. 2008 (2008), no. 5, 098, 14 pages, arXiv:0802.1556.
  24. Dabholkar A., Harvey J.A., Nonrenormalization of the superstring tension, Phys. Rev. Lett. 63 (1989), 478-481.
  25. Dabholkar A., Kallosh R., Maloney A., A stringy cloak for a classical singularity, J. High Energy Phys. 2004 (2004), no. 12, 059, 11 pages, hep-th/0410076.
  26. Denef F., Quantum quivers and Hall/hole halos, J. High Energy Phys. 2002 (2002), no. 10, 023, 42 pages, hep-th/0206072.
  27. Fré P., Sorin A.S., The arrow of time and the Weyl group: all supergravity billiards are integrable, arXiv:0710.1059.
  28. Denef F., Greene B.R., Raugas M., Split attractor flows and the spectrum of BPS D-branes on the quintic, J. High Energy Phys. 2001 (2001), no. 5, 012, 47 pages, hep-th/0101135.
  29. Feingold A.J., Frenkel I.B., A hyperbolic Kac-Moody Algebra and the theory of Siegel modular forms of genus 2, Math. Ann. 263 (1983), 87-144.
  30. Feingold A.J., Nicolai H., Subalgebras of hyperbolic Kac-Moody algebras, Contemp. Math. 343 (2004), 97-114, math.QA/0303179.
  31. Ray U., Automorphic forms and Lie superalgebra, Springer, Dordrecht, 2006.
  32. Eguchi T., Ooguri H., Taormina A., Yang S.K., Superconformal algebras and string compactification on manifolds with SU(N) holonomy, Nuclear Phys. B 315 (1989), 193-221.
  33. Borcherds R.E., Automorphic forms with singularities on Grassmannian, Invent. Math. 132 (1998), 491-562, alg-geom/9609022.
  34. Göttsche L., The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990), 193-207.
  35. Dijkgraaf R., Moore G.W., Verlinde E.P., Verlinde H.L., Elliptic genera of symmetric products and second quantized strings, Comm. Math. Phys. 185 (1997), 197-209, hep-th/9608096.
  36. David J.R., Jatkar D.P., Sen A., Dyon spectrum in generic N=4 supersymmetric ZN orbifolds, J. High Energy Phys. 2007 (2007), no. 1, 016, 31 pages, hep-th/0609109.
  37. Yau S.T., Zaslow E., BPS states, string duality, and nodal curves on K3, Nuclear Phys. B 471 (1996), 503-512, hep-th/9512121.
  38. Cachazo F., Fiol B., Intriligator K.A., Katz S., Vafa C., A geometric unification of dualities, Nuclear Phys. B 628 (2002), 3-78, hep-th/0110028.
  39. Gaiotto D., Re-recounting dyons in N=4 string theory, hep-th/0506249.
  40. Sen A., Three string junction and N=4 dyon spectrum, J. High Energy Phys. 2007 (2007), no. 12, 019, 12 pages, arXiv:0708.3715.
  41. Cheng M.C.N., Dabholkar A., Work in progress.
  42. Humphreys J.E., Reflection groups and Coxeter groups, Cambridge University Press, Cambridge, 1990.
  43. Björner A., Brenti F., Combinatorics of Coxeter groups, Springer, New York, 2005.
  44. Davis M.W., The geometry and topology of Coxeter groups, Princeton University Press, Princeton, NJ, 2008.


Previous article   Next article   Contents of Volume 4 (2008)