|
SIGMA 4 (2008), 072, 7 pages arXiv:0807.1790
https://doi.org/10.3842/SIGMA.2008.072
A Jacobson Radical Decomposition of the Fano-Snowflake Configuration
Metod Saniga a and Petr Pracna b
a) Astronomical Institute, Slovak Academy of
Sciences, SK-05960 Tatranská Lomnica, Slovak Republic
b) J. Heyrovský Institute of Physical Chemistry,
v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, CZ-18223 Prague 8, Czech Republic
Received July 14, 2008, in final form October 17, 2008; Published online October 24, 2008
Abstract
The Fano-Snowflake, a specific configuration associated with the smallest ring of ternions Rà (arXiv:0803.4436 and arXiv:0806.3153), admits an interesting partitioning with respect to the Jacobson radical of Rà. The totality of 21 free cyclic submodules generated by non-unimodular
vectors of the free left Rà-module Rà3 is shown to split into three disjoint sets of cardinalities 9, 9 and 3 according as the number of Jacobson radical
entries in the generating vector is 2, 1 or 0, respectively. The corresponding ''ternion-induced'' factorization of the lines of the Fano plane sitting in the middle of the Fano-Snowflake
is found to differ fundamentally from the natural one, i.e., from that with respect to the Jacobson radical of the Galois field of two elements.
Key words:
non-unimodular geometry over rings; smallest ring of ternions; Fano plane.
pdf (162 kb)
ps (164 kb)
tex (94 kb)
References
- Brehm U., Greferath M., Schmidt S.E., Projective geometry on modular
lattices, in Handbook of Incidence Geometry, Editor F. Buekenhout, Elsevier, Amsterdam, 1995, 1115-1142.
- Saniga M., Havlicek H., Planat M., Pracna P., Twin "Fano-Snowflakes" over the smallest ring of ternions, SIGMA 4 (2008),
050, 7 pages, arXiv:0803.4436.
- Havlicek H., Saniga M., Vectors, cyclic submodules and projective spaces linked with ternions, arXiv:0806.3153.
- Veldkamp F.D., Projective planes over rings of stable rang 2, Geom. Dedicata 11 (1981), 285-308.
- Veldkamp F.D., Geometry over rings, in Handbook of Incidence Geometry, Editor F. Buekenhout, Elsevier, Amsterdam, 1995, 1033-1084.
- Herzer A., Chain geometries, in Handbook of Incidence Geometry, Editor F. Buekenhout, Elsevier, Amsterdam, 1995, 781-842.
- Blunck A., Herzer A., Kettengeometrien - Eine Einführung, Shaker Verlag, Aachen, 2005.
- Brown E., The many names of (7,3,1), Math. Mag. 75 (2002), 83-94.
|
|