|
SIGMA 4 (2008), 080, 20 pages arXiv:0809.2572
https://doi.org/10.3842/SIGMA.2008.080
Contribution to the Special Issue on Deformation Quantization
Analyticity of the Free Energy of a Closed 3-Manifold
Stavros Garoufalidis a, Thang T.Q. Lê a and Marcos Mariño b
a) School of Mathematics, Georgia Institute of Technology,
Atlanta, GA 30332-0160, USA
b) Section de Mathématiques, Université de Genève, CH-1211 Genève 4, Switzerland
Received September 15, 2008, in final form November 06, 2008; Published online November 15, 2008
Abstract
The free energy of a closed 3-manifold is a 2-parameter formal power series
which encodes the perturbative Chern-Simons invariant (also known
as the LMO invariant) of a closed 3-manifold with gauge group U(N)
for arbitrary N. We prove that the free energy of an arbitrary closed
3-manifold is uniformly Gevrey-1. As a corollary, it follows that the genus
g part of the free energy is convergent in a neighborhood of
zero, independent of the genus. Our results follow from
an estimate of the LMO invariant, in a particular gauge, and from recent
results of Bender-Gao-Richmond on the asymptotics of the number of rooted maps
for arbitrary genus. We illustrate our results with an explicit formula
for the free energy of a Lens space. In addition, using the Painlevé
differential equation, we obtain an asymptotic expansion for the number of
cubic graphs to all orders, stengthening the results of Bender-Gao-Richmond.
Key words:
Chern-Simons theory; perturbation theory; gauge theory; free energy; planar limit; Gevrey series; LMO invariant; weight systems; ribbon graphs; cubic graphs; lens spaces; trilogarithm; polylogarithm; Painlevé I; WKB; asymptotic expansions; transseries; Riemann-Hilbert problem.
pdf (373 kb)
ps (225 kb)
tex (27 kb)
References
- Aoki T., Kawai T., Koike T., Takei Y.,
On the exact WKB analysis of operators admitting infinitely many
phases,
Adv. Math. 181 (2004), 165-189.
- Bar-Natan D., On the Vassiliev knot invariants,
Topology 34 (1995), 423-472.
- Bar-Natan D., Garoufalidis S.,
On the Melvin-Morton-Rozansky conjecture,
Invent. Math. 125 (1996), 103-133.
- Bar-Natan D., Lawrence R.,
A rational surgery formula for the LMO invariant,
Israel J. Math. 140 (2004), 29-60, math.GT/0007045.
- Bar-Natan D., Garoufalidis S., Rozansky L.,
Thurston D.,
The Aarhus integral of rational homology 3-spheres. I. A highly non trivial flat connection on S3,
Selecta Math. (N.S.) 8 (2002), 315-339, q-alg/9706004.
Bar-Natan D., Garoufalidis S., Rozansky L.,
Thurston D.,
The Aarhus integral of rational homology 3-spheres. II. Invariance and universality,
Selecta Math. (N.S.)
8 (2002), 341-371, math.QA/9801049.
Bar-Natan D., Garoufalidis S., Rozansky L.,
Thurston D.,
The Aarhus integral of rational homology 3-spheres. III. Relation with the Le-Murakami-Ohtsuki invariant,
Selecta Math. (N.S.)
10 (2004), 305-324, math.QA/9808013.
- Bender E.A., Canfield E.R.,
The asymptotic number of rooted maps on a surface,
J. Combin. Theory Ser. A 43 (1986), 244-257.
- Bender E.A., Gao Z., Richmond L.B.,
The map asymptotics constant tg,
Electron. J. Combin. 15 (2008), no. 1,
paper 51, 8 pages.
- Benna M.K., Benvenuti S., Klebanov I.R.,
Scardicchio A., A test of the AdS/CFT correspondence using high-spin operators,
hep-th/0611135.
- Beisert N., Eden B., Staudacher M.,
Transcendentality and crossing, J. Stat. Mech. 2007 (2007), P01021, 30 pages,
hep-th/0610251.
- Bessis D., Itzykson C., Zuber J.B.,
Quantum field theory techniques in graphical enumeration,
Adv. in Appl. Math. 1 (1980), 109-157.
- Boutroux P.,
Recherches sur les transcendantes de M. Painlevé et l'étude
asymptotique des équations différentielles du second ordre,
Ann. Sci. École Norm. Sup. (3) 30 (1913), 255-375.
- Brézin E., Itzykson C., Parisi G., Zuber J.B.,
Planar diagrams,
Comm. Math. Phys. 59 (1978), 35-51.
- Cohen H., Lewin L., Zagier D.,
A sixteenth-order polylogarithm ladder,
Experiment. Math. 1 (1992), 25-34.
- Costin O., Garoufalidis S.,
Resurgence of the fractional polylogarithms,
Math. Res. Lett., to appear, math.CA/0701743.
- Costin O., Kruskal M.,
Optimal uniform estimates and rigorous
asymptotics beyond all orders for a class of ordinary differential
equations,
Proc. Roy. Soc. London Ser. A 452 (1996), no. 1948, 1057-1085, math.CA/0608412.
- Di Francesco P., Ginsparg P., Zinn-Justin J.,
2D gravity and random matrices,
Phys. Rep. 254 (1995), no. 1-2, 133 pages, hep-th/9306153.
- Eynard B., Zinn-Justin J.,
Large order behaviour of 2D gravity coupled to D < 1 matter,
Phys. Lett. B 302 (1993), 396-402, hep-th/9301004.
- Fokas A.S., Its A.R., Kitaev A.V.,
The isomonodromy approach to matrix models in 2D quantum gravity,
Comm. Math. Phys. 147 (1992), 395-430.
- Fokas A.S., Its A.R., Kapaev A., Novokshenov V.Yu.,
Painlevé transcendents. The Riemann-Hilbert approach,
Mathematical Surveys and Monographs, Vol. 128, American Mathematical Society, Providence, RI, 2006.
- Garoufalidis S., Lê T.T.Q.,
Gevrey series in quantum topology,
J. Reine Angew. Math. 618 (2008), 169-195, math.GT/0609618.
- Garoufalidis S., Lê T.T.Q.,
Asymptotics of the colored Jones function of a knot,
math.GT/0508100.
- Garoufalidis S.,
Difference and differential equations for the colored Jones
function,
J. Knot Theory Ramifications 17 (2008), 495-510, math.GT/0306229.
- Garoufalidis S.,
Chern-Simons theory, analytic continuation and arithmetic,
Acta Math. Vietnam., to appear, arXiv:0711.1716.
- Garoufalidis S., Habegger N.,
The Alexander polynomial and finite type 3-manifold invariants,
Math. Ann. 316 (2000), 485-497, q-alg/9708002.
- Garoufalidis S., Mariño M.,
On Chern-Simons matrix models,
math.GT/0601390.
- Garoufalidis S., Mariño M., in preparation.
- Garoufalidis S., Mariño M., in preparation.
- Garoufalidis S., Rozansky L.,
The loop of the Kontsevich integral,
the null-move and S-equivalence,
Topology 43 (2004), 1183-1210, math.GT/0003187.
- Gao Z.C.,
A pattern for the asymptotic number of rooted maps on surfaces,
J. Combin. Theory Ser. A 64 (1993), 246-264.
- Gao Z.C.,
The number of rooted triangular maps on a surface,
J. Combin. Theory Ser. B 52 (1991), 236-249.
- Gopakumar R., Vafa C.,
M-theory and topological strings-I,
hep-th/9809187.
- Goulden I.P., Jackson D.M.,
The KP hierarchy, branched covers, and triangulations,
Adv. Math., to appear, arXiv:0803.3980.
- Habegger N., Masbaum G.,
The Kontsevich integral and Milnor's invariants,
Topology 39 (2000), 1253-1289.
- Habegger N., Thompson G.,
The universal perturbative quantum 3-manifold invariant,
Rozansky-Witten invariants and the generalized Casson invariants,
Acta Math. Vietnam., to appear, math.GT/9911049.
- 't Hooft G.,
On the convergence of planar diagram expansions,
Comm. Math. Phys. 86 (1982), 449-464.
- Joshi N., Kruskal M.D.,
A direct proof that solutions of the six Painlevé equations
have no movable singularities except poles,
Stud. Appl. Math. 93 (1994), 187-207.
- Kapaev A.A.,
Asymptotic behavior of the solutions of the
Painlevé equation of the first kind,
Differentsial'nye Uravneniya 24 (1988), 1684-1695
(English transl.:
Differential Equations 24 (1988), 1107-1115).
- Kapaev A.A.,
Quasi-linear stokes phenomenon for the Painlevé first equation,
J. Phys. A: Math. Gen. 37 (2004), 11149-11167, nlin.SI/0404026.
- Kupergberg G., Thurston D.P.,
Perturbative 3-manifold invariants by cut-and-paste topology,
math.GT/9912167.
- Kuriya T.,
On the LMO conjecture,
arXiv:0803.1732.
- Lê T.T.Q., Murakami J., Ohtsuki T.,
On a universal perturbative invariant of 3-manifolds,
Topology 37 (1998), 539-574.
- Lê T.T.Q.,
On perturbative PSU(n) invariants of rational homology
3-spheres,
Topology 39 (2000), 813-849, math.GT/9802032.
- Lê T.T.Q.,
Quantum invariants of 3-manifolds: integrality, splitting, and
perturbative expansion,
Topology Appl. 127 (2003), 125-152, math.QA/0004099.
- Le Guillou J.C., Zinn-Justin J. (Editors),
Large order behavior of perturbation theory,
North-Holland, Amsterdam, 1990.
- Mariño M.,
Chern-Simons theory, matrix integrals and perturbative
three-manifold invariants,
Comm. Math. Phys. 253 (2005), 25-49, hep-th/0207096.
- Mariño M.,
Chern-Simons theory and topological strings,
Rev. Modern Phys. 77 (2005), 675-720, hep-th/0406005.
- Mariño M., Schiappa R., Weiss M.,
Nonperturbative effects and the large-order behavior of matrix
models and topological strings,
Commun. Number Th. Phys. 2 (2008), 349-419, arXiv:0711.1954.
- Oesterlé J.,
Polylogarithmes,
Séminaire Bourbaki, Vol. 1992/93,
Astérisque no. 216 (1993), Exp. no. 762, 49-67.
- Ohtsuki T.,
A polynomial invariant of rational homology 3-spheres,
Invent. Math. 123 (1996), 241-257.
- Ohtsuki T.,
Quantum invariants. A study of knots, 3-manifolds, and their
sets,
Series on Knots and Everything, Vol. 29, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.
- Rozansky L.,
The universal R-matrix, Burau representation and the
Melvin-Morton expansion of the colored Jones polynomial,
Adv. Math. 134 (1998), 1-31.
- Takata T.,
On quantum PSU(n)-invariants for lens spaces,
J. Knot Theory Ramifications 5 (1996), 885-901.
- Takei Y.,
On the connection formula for the first Painlevé
equation - from the viewpoint of the exact WKB analysis,
Surikaisekikenkyusho Kokyuroku 931 (1995), 70-99.
- Turaev V.,
The Yang-Baxter equation and invariants of links,
Invent. Math. 92 (1988), 527-553.
- Witten E.,
Two-dimensional gravity and intersection theory on moduli space,
in Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991,
243-310.
|
|