|
SIGMA 4 (2008), 083, 9 pages arXiv:0812.0739
https://doi.org/10.3842/SIGMA.2008.083
Contribution to the Special Issue on Dunkl Operators and Related Topics
A Limit Relation for Dunkl-Bessel Functions of Type A and B
Margit Rösler a and Michael Voit b
a) Institut für Mathematik, TU Clausthal,
Erzstr. 1, D-38678 Clausthal-Zellerfeld, Germany
b) Fachbereich Mathematik, TU Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany
Received October 21, 2008, in final form November 26, 2008; Published online December 03, 2008
Abstract
We prove a limit relation for the Dunkl-Bessel function of type BN
with multiplicity parameters k1 on the roots ±ei and k2 on ±ei±ej where k1 tends to infinity and the arguments
are suitably scaled. It gives a good approximation
in terms of the Dunkl-type Bessel function of type AN−1 with multiplicity k2. For certain values of k2 an improved estimate is obtained from a corresponding limit relation
for Bessel functions on matrix cones.
Key words:
Bessel functions; Dunkl operators; asymptotics.
pdf (241 kb)
ps (170 kb)
tex (12 kb)
References
- Baker T.H., Forrester P.J., The Calogero-Sutherland model and generalized classical polynomials, Comm. Math. Phys. 188 (1997), 175-216, solv-int/9608004.
- Baker T.H., Forrester P.J., Nonsymmetric Jack polynomials and integral kernels,
Duke Math. J. 95 (1998), 1-50, q-alg/9612003.
- Dunkl C.F., Xu Y., Orthogonal polynomials of several variables,
Encyclopedia of Mathematics and Its Applications, Vol. 81, Cambridge University Press, Cambridge, 2001.
- Faraut J., Korányi A., Analysis on symmetric cones, Oxford
Science Publications,
The Clarendon Press, Oxford University Press, New York, 1994.
- Gross K., Richards D., Special functions of matrix argument
I. Algebraic induction, zonal polynomials, and hypergeometric functions,
Trans. Amer. Math. Soc. 301 (1987), 781-811.
- Helgason S., Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Pure and Applied Mathematics, Vol. 113, Academic Press, Inc., Orlando, FL, 1984.
- Herz C.S., Bessel functions of matrix argument,
Ann. of Math. (2) 61 (1955), 474-523.
- Kaneko J., Selberg integrals and hypergeometric functions
associated with Jack polynomials, SIAM J. Math. Anal. 24 (1993), 1086-1100.
- Knop F., Sahi S., A recursion and combinatorial formula
for Jack polynomials, Invent. Math. 128 (1997), 9-22, q-alg/9610016.
- Opdam E.M., Dunkl operators, Bessel functions and the
discriminant of a finite Coxeter group, Compositio Math. 85
(1993), 333-373.
- Rösler M., Dunkl operators: theory and applications, in
Orthogonal Polynomials and Special Functions (Leuven, 2002), Editors E. Koelink et al.,
Springer Lect. Notes Math., Vol. 1817, Springer, Berlin, 2003, 93-135, math.CA/0210366.
- Rösler M., A positive radial product formula for the Dunkl kernel,
Trans. Amer. Math. Soc. 355 (2003), 2413-2438, math.CA/0210137.
- Rösler M., Bessel convolutions on matrix cones,
Compos. Math. 143 (2007), 749-779, math.CA/0512474.
- Rösler M., Voit M., Limit theorems for radial
random walks on p×q matrices as p tends to infinity, Math. Nachr., to appear, math.CA/0703520.
- Stanley R.P., Some combinatorial properties
of Jack symmetric functions, Adv. Math. 77 (1989), 76-115.
- Voit M., A limit theorem for isotropic random walks
on Rd for d®¥, Russian J. Math. Phys. 3 (1995),
535-539.
- Watson G.N., A treatise on the theory of Bessel functions,
Cambridge University Press, Cambridge, 1966.
|
|