|
SIGMA 4 (2008), 086, 28 pages arXiv:0807.1641
https://doi.org/10.3842/SIGMA.2008.086
Contribution to the Special Issue on Kac-Moody Algebras and Applications
Vertex Algebroids over Veronese Rings
Fyodor Malikov
Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA
Received July 28, 2008, in final form December 07, 2008; Published online December 13, 2008
Abstract
We find a canonical quantization of Courant algebroids
over Veronese rings. Part of our approach allows a semi-infinite
cohomology interpretation, and the latter can be used to define
sheaves of chiral differential operators on some homogeneous spaces
including the space of pure spinors punctured at a point.
Key words:
differential graded algebra; vertex algebra; algebroid.
pdf (393 kb)
ps (244 kb)
tex (33 kb)
References
- Arkhipov S., Gaitsgory D., Differential operators on the loop
group via chiral algebras, Int. Math. Res. Not. 2002 (2002), no. 4,
165-210, math.AG/0009007.
- Behrend K., Differential graded schemes I: Perfect resolving
algebras, math.AG/0212225.
- Backelin J., Fröberg R., Koszul algebras, Veronese subrings
and rings with linear resolutions, Rev. Roumaine Math. Pures
Appl. 30 (1985), no. 2, 85-97.
- Berkovits N., Nekrasov N., The character of pure spinors, Lett. Math. Phys.
74 (2005), 75-109, hep-th/0503075.
- Berkovits N., Super-Poincaré covariant quantization of the
superstring, J. High Energy Phys. 2000 (2000), no. 4, 18, 17 pages, hep-th/0001035.
- Bezrukavnikov R., Koszul property and Frobenius splitting of
Schubert varieties, alg-geom/9502021.
- Bressler P., The first Pontryagin class, Compos. Math. 143 (2007),
1127-1163, math.AT/0509563.
- Courant T.J., Dirac manifolds, Trans. Amer. Math. Soc.
319 (1990), 631-661.
- Dorfman I., Dirac structures of integrable evolution
equations, Phys. Lett. A 125 (1987), no. 5, 240-246.
- Frenkel E., Private communication.
- Frenkel E., Wakimoto modules, opers and the center at the critical level, Adv. Math. 195 (2005), 297-404,
math.QA/0210029.
- Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves, 2nd ed.,
Mathematical Surveys and Monographs, Vol. 88, American Mathematical Society, Providence, RI, 2004.
- Feigin B., Semi-infinite homology of Lie, Kac-Moody and
Virasoro algebras, Uspekhi Mat. Nauk 39 (1984), no. 2, 195-196 (in Russian).
- Feigin B., Parkhomenko S., Regular representation of affine
Kac-Moody algebras, in Algebraic and geometric methods in
mathematical physics (Kaciveli, 1993), Math. Phys. Stud.,
Vol. 19, Kluwer Acad. Publ., Dordrecht, 1996, 415-424, hep-th/9308065.
- Gorbounov V., Malikov F., Schechtman V., Gerbes of chiral
differential operators. II. Vertex algebroids, Inv. Math.
155 (2004), 605-680, math.AG/0003170.
- Gorbounov V., Malikov F., Schechtman V., On chiral
differential operators over homogeneous spaces, Int. J. Math. Math. Sci. 26
(2001), no. 2, 83-106, math.AG/0008154.
- Gorbounov V., Schechtman V.,
Homological algebra and divergent series,
arXiv:0712.3670.
- Hinich V., Homological algebra of homotopy algebras,
Comm. Algebra 25 (1997), 3291-3323, q-alg/9702015.
- Inamdar S.P., Mehta V.B., Frobenius splitting of Schubert
varieties and linear syzygies, Amer. J. Math. 116
(1994), 1569-1586.
- Kac V., Vertex algebras for beginners, 2nd ed., University Lecture Series, Vol. 10, American Mathematical Society, Providence, RI, 1998.
- Li H., Abelianizing vertex algebras,
Comm. Math. Phys. 259 (2005), 391-411,
math.QA/0409140.
- Liu Z.-J., Weinstein A., Xu P., Manin triples for Lie
bialgebroids, J. Differential Geom. 45 (1997), 547-574, dg-ga/9508013.
- Malikov F., Lagrangian approach to sheaves of vertex algebras,
Comm. Math. Phys. 278 (2008), 487-548, math.AG/0604093.
- Nekrasov N., Lectures on curved beta-gamma systems, pure spinors, and anomalies,
hep-th/0511008.
- Primc M., Vertex algebras generated by Lie algebras, J.
Pure Appl. Algebra 135 (1999), 253-293, math.QA/9901095.
|
|