|
SIGMA 5 (2009), 004, 8 pages arXiv:0901.1644
https://doi.org/10.3842/SIGMA.2009.004
Contribution to the Proceedings of the XVIIth International Colloquium on Integrable Systems and Quantum Symmetries
Remarks on Multi-Dimensional Conformal Mechanics
Cestmír Burdík a and Armen Nersessian b, c
a) FNSPE, Czech Technical University in Prague Trojanova 13, 120 00 Prague 2,
Czech Republic
b) Artsakh State University, 5 M. Gosh Str., Stepanakert, Armenia
c) Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
Received October 30, 2008, in final form January 10, 2009; Published online January 12, 2009
Abstract
Recently, Galajinsky, Lechtenfeld and Polovnikov
proposed an elegant group-theoretical transformation of the
generic conformal-invariant mechanics to the free one. Considering
the classical counterpart of this transformation, we relate this
transformation with the Weil model of Lobachewsky space.
Key words:
conformal mechanics; integrability.
pdf (182 kb)
ps (134 kb)
tex (13 kb)
References
- de Alfaro V., Fubini S., Furlan G.,
Conformal invariance in quantum mechanics,
Nuovo Cimento A 34 (1976), 569-612.
- Calogero F.,
Solution of a three-body problem in one-dimension,
J. Math. Phys. 10 (1969), 2191-2196.
Calogero F.,
Solution of the one-dimensional N-body problems with quadratic and/or
inversely quadratic pair potentials,
J. Math. Phys. 12 (1971), 419-436.
- Polychronakos A.P.,
Physics and mathematics of Calogero particles,
J. Phys. A: Math. Gen. 39 (2006), 12793-12845, hep-th/0607033.
- Gurappa N., Prasanta K.,
Equivalence of the Calogero-Sutherland model to free harmonic
oscillators,
Phys. Rev. B 59 (1999), R2490-R2493, cond-mat/9710035.
Ghosh P.K.,
Super-Calogero-Moser-Sutherland systems and free super-oscillators: a
mapping,
Nuclear Phys. B 595 (2001), 519-535, hep-th/0007208.
Brzezinski T., Gonera C., Maslanka P.,
On the equivalence of the rational Calogero-Moser system to free
particles,
Phys. Lett. A 254 (1999), 185-196, hep-th/9810176.
- Galajinsky A., Lechtenfeld O., Polovnikov K.,
Calogero models and nonlocal conformal transformations,
Phys. Lett. B 643 (2006), 221-227, hep-th/0607215.
- Freedman D.Z., Mende P.F.,
An exactly solvable N-particle system in supersymmetric quantum mechanics,
Nuclear Phys. B 344 (1990), 317-343.
- Galajinsky A., Lechtenfeld O., Polovnikov K., N = 4 superconformal Calogero models,
J. High Energy Phys. 2007 (2007), no. 11, 008, 23 pages, arXiv:0708.1075.
Galajinsky A., Lechtenfeld O., Polovnikov K., N = 4 mechanics, WDVV equations and roots,
arXiv:0802.4386.
Lechtenfeld O.,
WDVV solutions from orthocentric polytopes and Veselov systems,
arXiv:0805.3245.
- Galajinsky A.V., Remark on quantum mechanics with conformal Galilean symmetry,
Phys. Rev. D 78 (2008), 087701, 3 pages, arXiv:0808.1553.
- Hakobyan T., Nersessian A.,
Lobachevsky geometry of (super)conformal mechanics,
arXiv:0803.1293.
- Landau L.D., Lifshits E.M., Mechanics, 5th ed., Nauka, Moscow, 2004.
- Higgs P.W., Dynamical symmetries in a spherical geometry. I, J. Phys. A: Math. Gen. 12 (1979), 309-323.
Leemon H.I., Dynamical symmetries in a spherical geometry. II,
J. Phys. A: Math. Gen. 12 (1979), 489-501.
- Schrödinger E., A method of determining quantum-mechanical
eigenvalues and eigenfunctions, Proc. Roy. Irish Acad. Sect. A
46 (1941), 9-16.
Schrödinger E., Further studies on solving eigenvalue problems by
factorization, Proc. Roy. Irish Acad. Sect. A 46 (1941), 183-206.
Schrödinger E., The factorization of the hypergeometric equation, Proc. Roy. Irish Acad. Sect. A 47 (1941), 53-54, physics/9910003.
- Otchik V.S., Symmetry and separation of variables in the two-center Coulomb problem in
three dimensional spaces of constant curvature, Dokl. Akad. Nauk BSSR 35 (1991), 420-424 (in Russian).
- Nersessian A., Yeghikyan V.,
Anisotropic inharmonic Higgs oscillator and related (MICZ-)Kepler-like
systems,
J. Phys. A: Math. Theor. 41 (2008), 155203, 11 pages, arXiv:0710.5001.
- Hakobyan T., Nersessian A., Yeghikyan V.,
Cuboctahedric Higgs oscillator from the Calogero model,
arXiv:0808.0430.
- Bellucci S., Krivonos S., Sutulin A.,
N = 4 supersymmetric 3-particles Calogero model,
Nuclear Phys. B 805 (2008), 24-39, arXiv:0805.3480.
- Arnold V.I., Mathematical methods in classical mechanics, Nauka, Moscow, 1973.
|
|