|
SIGMA 5 (2009), 007, 24 pages arXiv:0901.2916
https://doi.org/10.3842/SIGMA.2009.007
Contribution to the Proceedings of the VIIth Workshop ''Quantum Physics with Non-Hermitian Operators''
On the Spectrum of a Discrete Non-Hermitian Quantum System
Ebru Ergun
Department of Physics, Ankara University, 06100 Tandogan, Ankara, Turkey
Received October 28, 2008, in final form January 13, 2009; Published online January 19, 2009
Abstract
In this paper, we develop spectral analysis of a discrete non-Hermitian quantum system that is a discrete counterpart of some continuous quantum systems on a complex contour. In particular, simple conditions for
discreteness of the spectrum are established.
Key words:
difference operator; non-Hermiticity; spectrum; eigenvalue; eigenvector; completely continuous operator.
pdf (325 kb)
ps (206 kb)
tex (27 kb)
References
- Bender C.M., Making sense of non-Hermitian Hamiltonians,
Rep. Progr. Phys. 70 (2007), 947-1018, hep-th/0703096.
- Bender C.M., Boettcher S., Real spectra in non-Hermitian
Hamiltonians having PT-symmetry, Phys. Rev. Lett. 80
(1998), 5243-5246, physics/9712001.
- Dorey P., Dunning C., Tateo T., Spectral equivalences, Bethe
ansatz equations, and reality properties in PT-symmetric quantum
mechanics, J. Phys. A: Math. Gen. 34 (2001), 5679-5704, hep-th/0103051.
- Shin K.C., On the reality of the eigenvalues for a class of PT-symmetric oscillators, Comm. Math. Phys. 229
(2002), 543-564, math-ph/0201013.
- Mostafazadeh A., Pseudo-Hermitian description of PT-symmetric systems defined on a complex contour, J. Phys. A: Math.
Gen. 38 (2005), 3213-3234, quant-ph/0410012.
- Kelley W.G., Peterson A.C., Difference equations. An
introduction with applications, Academic Press, Inc., Boston, MA, 1991.
- Teschl G., Jacobi operators and completely integrable
nonlinear lattices, Mathematical Surveys and Monographs, Vol. 72, American Mathematical Society, Providence, RI, 2000.
- Bender C.M., Meisinger P.N., Wang Q., Finite dimensional PT-symmetric Hamiltonians, J. Phys. A: Math. Gen. 36 (2003), 6791-6797, quant-ph/0303174.
- Weigret S., How to test for digonalizability: the discretized PT-invariant square-well potential, Czechoslovak J. Phys. 55
(2005), 1183-1186.
- Znojil M., Matching method and exact solvability of discrete PT-symmetric square wells, J. Phys. A: Math. Gen. 39
(2006), 10247-10261, quant-ph/0605209.
- Znojil M., Maximal couplings in PT-symmetric chain models
with the real spectrum of energies, J. Phys. A: Math. Theor.
40 (2007), 4863-4875, math-ph/0703070.
- Znojil M., Tridiagonal PT-symmetric N by N Hamiltonians
and fine-tuning of their obsevability domains in the strongly non-Hermitian
regime, J. Phys. A: Math. Theor. 40 (2007), 13131-13148, arXiv:0709.1569.
- Jones H.F., Scattering from localized non-Hermitian potentials, Phys. Rev. D 76 (2007), 125003, 5 pages, arXiv:0707.3031.
- Znojil M., Scattering theory with localized
non-Hermiticities, Phys. Rev. D 78 (2008), 025026, 10 pages, arXiv:0805.2800.
- Ergun E., On the reality of the spectrum of a non-Hermitian
discrete Hamiltonian, Rep. Math. Phys. 63 (2009), 75-93.
- Akhiezer N.I., Glazman I.M., Theory of linear operators in
Hilbert space, Vol. 1, Ungar, New York, 1961.
- Lusternik L.A., Sobolev V.J., Elements of functional
analysis, H. Ward Crowley Frederick Ungar Publishing Co., New York, 1961.
|
|