|
SIGMA 5 (2009), 008, 24 pages arXiv:0901.3081
https://doi.org/10.3842/SIGMA.2009.008
Structure Theory for Second Order 2D Superintegrable Systems with 1-Parameter Potentials
Ernest G. Kalnins a, Jonathan M. Kress b, Willard Miller Jr. c and Sarah Post c
a) Department of Mathematics, University
of Waikato, Hamilton, New Zealand
b) School of Mathematics, The University of New South Wales,
Sydney NSW 2052, Australia
c) School of Mathematics, University of Minnesota, Minneapolis, Minnesota, 55455, USA
Received November 26, 2008, in final form January 14, 2009; Published online January 20, 2009
Abstract
The structure theory for the quadratic algebra generated by first and second order constants of the motion for 2D second order superintegrable systems with nondegenerate (3-parameter) and or 2-parameter potentials is well understood, but the results for the strictly 1-parameter case have been incomplete. Here we work out this structure theory and prove that the quadratic algebra generated by first and second order constants of the motion for systems with 4 second order constants of the motion must close at order three with the functional relationship between the 4 generators of order four. We also show that every 1-parameter superintegrable system is Stäckel equivalent to a system on a constant curvature space.
Key words:
superintegrability; quadratic algebras.
pdf (305 kb)
ps (195 kb)
tex (25 kb)
References
- Kalnins E.G., Kress J.M., Miller W. Jr.,
Second order superintegrable systems in conformally
flat spaces. I. 2D classical structure theory, J. Math. Phys. 46 (2005),
053509, 28 pages.
- Kalnins E.G., Kress J.M., Miller W. Jr.,
Second order superintegrable systems in conformally
flat spaces. II. The classical 2D Stäckel transform, J. Math. Phys. 46
(2005), 053510, 15 pages.
- Daskaloyannis C., Ypsilantis K., Unified treatment and classification of superintegrable
systems with integrals quadratic in momenta
on a two-dimensional manifold, J. Math. Phys. 47 (2006),
042904, 38 pages, math-ph/0412055.
- Kalnins E.G., Kress J.M., Miller W. Jr., Pogosyan G.S.,
Completeness of superintegrability in two-dimensional constant
curvature spaces,
J. Phys. A: Math. Gen. 34 (2001), 4705-4720, math-ph/0102006.
- Kalnins E.G., Kress J.M., Miller W. Jr.,
Second order superintegrable systems in conformally
flat spaces. V. 2D and 3D quantum systems,
J. Math. Phys. 47 (2006), 093501, 25 pages.
- Wojciechowski S.,
Superintegrability of the Calogero-Moser system,
Phys. Lett. A 95 (1983), 279-281.
- Evans N.W.,
Superintegrability in classical mechanics,
Phys. Rev. A 41 1990, 5666-5676.
Evans N.W., Group theory of the
Smorodinsky-Winternitz system, J. Math. Phys. 32 (1991), 3369-3375.
- Evans N.W.,
Super-integrability of the Winternitz system,
Phys. Lett. A 147 (1990), 483-486.
- Fris J., Mandrosov V., Smorodinsky Ya.A., Uhlír M., Winternitz P.,
On higher symmetries in quantum mechanics,
Phys. Lett. 16 (1965), 354-356.
- Fris J., Smorodinskii Ya.A., Uhlír M., Winternitz P.,
Symmetry groups in classical and quantum mechanics,
Soviet J. Nuclear Phys. 4 (1967), 444-450.
- Bonatos D., Daskaloyannis C., Kokkotas K.,
Deformed
oscillator algebras for two-dimensional quantum superintegrable
systems,
Phys. Rev. A 50 (1994), 3700-3709, hep-th/9309088.
- Daskaloyannis C.,
Quadratic Poisson algebras of two-dimensional classical
superintegrable systems and quadratic associative algebras of quantum
superintegrable systems,
J. Math. Phys. 42 (2001), 1100-1119, math-ph/0003017.
- Grosche C., Pogosyan G.S., Sissakian A.N.,
Path integral
discussion for Smorodinsky-Winternitz potentials. I. Two- and three-dimensional Euclidean space,
Fortschr. Phys. 43 (1995),
453-521, hep-th/9402121.
- Kalnins E.G., Kress J.M., Winternitz P.,
Superintegrability in a two-dimensional space of non-constant curvature,
J. Math. Phys. 43 (2002), 970-983, math-ph/0108015.
- Kalnins E.G., Miller W. Jr., Post S.,
Models of quadratic quantum algebras and their relation to classical superintegrable systems, submitted.
- Kalnins E.G., Miller W. Jr., Pogosyan G.S.,
Superintegrability and associated polynomial solutions. Euclidean space and
the sphere in two dimensions,
J. Math. Phys. 37 (1996) 6439-6467.
- Kalnins E. G., Miller W. Jr., Post S.,
Kalnins E.G., Miller W. Jr., Post S., Wilson
polynomials and the generic superintegrable system on the 2-sphere,
J. Phys. A: Math. Theor. 40 (2007), 11525-11538.
- Kalnins E.G., Miller W. Jr., Post S.,
Quantum and classical models for quadratic algebras associated with second order superintegrable systems,
SIGMA 4 (2008), 008, 21 pages, arXiv:0801.2848.
- Koenigs G., Sur les géodésiques a intégrales quadratiques, A note
appearing in "Lecons sur la théorie générale des
surfaces", G. Darboux, Vol. 4, Chelsea Publishing, 1972, 368-404.
- Hietarinta J., Grammaticos B., Dorizzi B., Ramani A.,
Coupling-constant metamorphosis and duality between
integrable Hamiltonian systems,
Phys. Rev. Lett. 53 (1984), 1707-1710.
- Boyer C.P., Kalnins E.G., Miller W. Jr.,
Stäckel-equivalent integrable Hamiltonian systems,
SIAM J. Math. Anal. 17 (1986), 778-797.
- Kalnins E.G., Kress J.M., Miller W. Jr., Winternitz P.,
Superintegrable systems in Darboux spaces,
J. Math. Phys. 44 (2003), 5811-5848, math-ph/0307039.
- Tsiganov A., Addition theorems and the Drach superintegrable systems,
J. Phys. A: Math. Theor. 41 (2008), 335204, 16 pages, arXiv:0805.3443.
- Tsiganov A., Leonard Euler: addition theorems and superintegrable systems,
arXiv:0810.1100.
- Kalnins E.G., Kress J.M., Miller W. Jr.,
Fine structure for 3D second order superintegrable systems:
3-parameter potentials, J. Phys. A: Math. Theor. 40
(2007), 5875-5892.
- Verrier P.E., Evans N.W.,
A new superintegrable Hamiltonian, J. Math. Phys. 49 (2008), 022902, 8 pages, arXiv:0712.3677.
- Evans N.W., Verrier P.E.,
Superintegrability of the caged anisotropic oscillator,
J. Math. Phys. 49 (2008), 092902, 10 pages, arXiv:0808.2146.
|
|