|
SIGMA 5 (2009), 018, 28 pages arXiv:0902.2464
https://doi.org/10.3842/SIGMA.2009.018
Contribution to the Proceedings of the VIIth Workshop ''Quantum Physics with Non-Hermitian Operators''
Inverse Spectral Problems for Tridiagonal N by N Complex Hamiltonians
Gusein Sh. Guseinov
Department of Mathematics, Atilim University, 06836 Incek, Ankara, Turkey
Received November 18, 2008, in final form February 09, 2009; Published online February 14, 2009
Abstract
In this paper, the concept of generalized spectral function is introduced for finite-order tridiagonal symmetric matrices (Jacobi matrices) with complex entries. The structure of the generalized spectral function is described in terms of spectral data consisting of the eigenvalues and normalizing numbers of the matrix. The inverse problems from generalized spectral function as well as from spectral data are investigated. In this way, a procedure for construction of complex tridiagonal matrices having real eigenvalues is obtained.
Key words:
Jacobi matrix; difference equation; generalized spectral function; spectral data.
pdf (366 kb)
ps (195 kb)
tex (23 kb)
References
- Boley D., Golub G.H., A survey of matrix inverse eigenvalue
problems, Inverse Problems 3 (1987), 595-622.
- Ikramov Kh.D., Chugunov V.N., Inverse matrix eigenvalue
problems, J. Math. Sciences 98 (2000), 51-136.
- Chu M.T., Golub G.H., Inverse eigenvalue problems: theory,
algorithms, and applications, Oxford University Press, New York, 2005.
- Marchenko V.A., Expansion in eigenfunctions of non-selfadjoint
singular second order differential operators, Mat. Sb.
52 (1960), 739-788 (in Russian).
- Rofe-Beketov F.S., Expansion in eigenfunctions of infinite
systems of differential equations in the non-selfadjoint and selfadjoint
cases, Mat. Sb. 51 (1960), 293-342 (in Russian).
- Guseinov G.Sh., Determination of an infinite non-selfadjoint
Jacobi matrix from its generalized spectral function, Mat. Zametki
23 (1978), 237-248 (English transl.: Math. Notes
23 (1978), 130-136).
- Guseinov G.Sh., The inverse problem from the generalized
spectral matrix for a second order non-selfadjoint difference equation on
the axis, Izv. Akad. Nauk Azerb. SSR
Ser. Fiz.-Tekhn. Mat. Nauk (1978), no. 5, 16-22 (in Russian).
- Kishakevich Yu.L., Spectral function of Marchenko type for a
difference operator of an even order, Mat. Zametki 11
(1972), 437-446 (English transl.: Math. Notes 11
(1972), 266-271).
- Kishakevich Yu.L., On an inverse problem for non-selfadjoint
difference operators, Mat. Zametki 11 (1972), 661-668
(English transl.: Math. Notes 11 (1972), 402-406).
- Bender C.M., Making sense of non-Hermitian Hamiltonians,
Rep. Progr. Phys. 70 (2007), 947-1018, hep-th/0703096.
- Znojil M., Matching method and exact solvability of discrete PT-symmetric square wells, J. Phys. A: Math. Gen. 39 (2006), 10247-10261, quant-ph/0605209.
- Znojil M., Maximal couplings in PT-symmetric chain models
with the real spectrum of energies, J. Phys. A: Math.
Theor. 40 (2007), 4863-4875, math-ph/0703070.
- Znojil M., Tridiagonal PT-symmetric N by N Hamiltonians
and fine-tuning of their observability domains in the strongly non-Hermitian
regime, J. Phys. A: Math. Theor. 40 (2007),
13131-13148, arXiv:0709.1569.
- Allakhverdiev B.P., Guseinov G.Sh., On the spectral theory of
dissipative difference operators of second order, Mat. Sb. 180 (1989), 101-118
(English transl.: Math. USSR Sbornik
66 (1990), 107-125).
- Guseinov G.Sh., Completeness of the eigenvectors of a
dissipative second order difference operator, J. Difference Equ. Appl. 8 (2002), 321-331.
- van Moerbeke P., Mumford D., The spectrum of difference
operators and algebraic curves, Acta Math. 143 (1979),
93-154.
- Sansuc J.J., Tkachenko V., Spectral parametrization of
non-selfadjoint Hill's operators, J. Differential Equations
125 (1996), 366-384.
- Egorova I., Golinskii L., Discrete spectrum for complex
perturbations of periodic Jacobi matrices, J. Difference Equ. Appl.
11 (2005), 1185-1203, math.SP/0503627.
- Atkinson F.V., Discrete and continuous boundary problems,
Academic Press, New York, 1964.
- Akhiezer N.I., The classical moment problem and some related
questions in analysis, Hafner, New York, 1965.
- Berezanskii Yu.M., Expansion in eigenfunctions of selfadjoint
operators, Translations of Mathematical Monographs, Vol. 17,
American Mathematical Society, Providence, R.I., 1968.
- Nikishin E.M., Sorokin V.N., Rational approximations and
orthogonality, Translations of Mathematical Monographs, Vol. 92,
American Mathematical Society, Providence, R.I., 1991.
- Teschl G., Jacobi operators and completely integrable
nonlinear lattices, Mathematical Surveys and Monographs, Vol. 72,
American Mathematical Society, Providence, R.I., 2000.
|
|