|
SIGMA 5 (2009), 022, 12 pages arXiv:0902.3968
https://doi.org/10.3842/SIGMA.2009.022
Contribution to the Proceedings of the XVIIth International Colloquium on Integrable Systems and Quantum Symmetries
Conformal Killing-Yano Tensors on Manifolds with Mixed 3-Structures
Stere Ianus a, Mihai Visinescu b and Gabriel Eduard Vîlcu a, c
a) University of Bucharest, Faculty of Mathematics and
Computer Science, Str. Academiei, Nr. 14, Sector 1, Bucharest 70109, Romania
b) National Institute for Physics and Nuclear Engineering, Department of Theoretical Physics,
P.O. Box M.G.-6, Magurele, Bucharest, Romania
c) Petroleum-Gas University of Ploiesti, Department of Mathematics and Computer Science,
Bulevardul Bucuresti, Nr. 39, Ploiesti 100680, Romania
Received October 30, 2008, in final form February 16, 2009; Published online February 23, 2009
Abstract
We show the existence of conformal Killing-Yano tensors on
a manifold endowed with a mixed 3-Sasakian structure.
Key words:
Killing-Yano tensor; mixed 3-structure; Einstein space.
pdf (244 kb)
ps (172 kb)
tex (15 kb)
References
- Bejancu A., Duggal K.L., Lightlike submanifolds of semi-Riemannian manifolds
and its application, Kluwer, Dortrecht, 1996.
- Belgun F., Moroianu A., Semmelmann U., Killing
forms on symmetric spaces, Differential Geom. Appl. 24
(2006), 215-222, math.DG/0409104.
- Benenti S., Separable dynamical systems:
characterization of separability structures on Riemannian manifolds,
Rep. Math. Phys. 12 (1977), 311-316.
- Blair D.E., Almost contact manifolds with Killing structure
tensors, Pacific J. Math. 39 (1971), 285-292.
- Blair D.E., Contact manifolds in Riemannian
geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin - New York, 1976.
- Boyer C., Galicki K., 3-Sasakian manifolds,
in Surveys in Differential Geometry: Essays on Einstein Manifolds, Surv. Differ. Geom., Vol. VI, Int. Press, Boston, MA, 1999, 123-184, hep-th/9810250.
- Caldarella A., Pastore A.M., Mixed 3-Sasakian structures and
curvature, arXiv:0803.1953.
- Cariglia M., Quantum mechanics of Yano tensors: Dirac equation in curved
spacetime, Classical Quantum Gravity 21 (2004),
1051-1077, hep-th/0305153.
- Carter B., Killing tensor quantum numbers and
conserved currents in curved spaces, Phys. Rev. D 16
(1977), 3395-3414.
- Carter B., McLenaghan R.G., Generalized
total angular momentum operator for Dirac equation in curved
space-time, Phys. Rev. D 19 (1979), 1093-1097.
- Cortés V., Mayer C., Mohaupt T.,
Saueressig F., Special geometry of euclidean supersymmetry. II. Hypermultiplets and the c-map, J. High Energy Phys. 2005 (2005), no. 06, 025, 37 pages, hep-th/0503094.
- Dunajski M., West S., Anti-self-dual conformal
structures in neutral signature, in
Recent Developments in Pseudo-Riemannian Geometry, Editors D.V. Alekseevsky and H. Baum,
ESI Lect. Math. Phys.,
Eur. Math. Soc., Zürich, 2008, 113-148,
math.DG/0610280.
- Floyd R., The dynamics of Kerr fields, PhD Thesis,
London University, 1973.
- Frolov V.P., Kubiznak D., Higher-dimensional black
holes: hidden symmetries and separation of variables, Classical Quantum Gravity 25 (2008), 154005, 22 pages, arXiv:0802.0322.
- Gibbons G.W., Rietdijk R.H., van Holten J.W., SUSY in the
sky, Nuclear Phys. B 404 (1993), 42-64, hep-th/9303112.
- Gray A., Einstein-like manifolds which are not Einstein, Geom.
Dedicata 7 (1978), 259-280.
- Hull C.M., Actions for (2,1) sigma models and
strings, Nuclear Phys. B 509 (1998), 252-272, hep-th/9702067.
- Hull C.M., Duality and the signature of space-time,
J. High Energy Phys. 1998 (1998), no. 11, 017, 36 pages, hep-th/9807127.
- Ianus S., Mazzocco R., Vîlcu G.E.,
Real lightlike hypersurfaces of paraquaternionic Kähler
manifolds, Mediterr. J. Math. 3 (2006), 581-592.
- Ianus S., Vîlcu G.E., Some constructions
of almost para-hyperhermitian structures on manifolds and tangent
bundles, Int. J. Geom. Methods Mod. Phys. 5 (2008), 893-903, arXiv:0707.3360.
- Ianus S., Vîlcu G.E., Hypersurfaces of paraquaternionic space forms,
J. Gen. Lie Theory Appl. 2 (2008), 175-179.
- Ianus S., Vîlcu G.E., Paraquaternionic manifolds and mixed
3-structures, in Proceedings of the VIII International Colloquium on
Differential Geometry (July 7-21, 2008, Santiago de Compostela),
Editors J.A. López and E. García-Río, Analysis
and Geometry in Foliated Manifolds, World Scientific, Singapore,
2009, to appear.
- Jost J., Riemannian geometry and geometric analysis, 3rd ed.,
Springer-Verlag, Berlin, 2002.
- Kamada H., Neutral hyper-Kähler structures on primary Kodaira surfaces,
Tsukuba J. Math. 23 (1999), 321-332.
- Kashiwada T., On conformal Killing tensor,
Natur. Sci. Rep. Ochanomizu Univ. 19 (1968), 67-74.
- Leiva C., Plyushchay M., Nonlinear superconformal symmetry of a fermion in
the field of a Dirac monopole, Phys. Lett. B 582 (2004),
135-143, hep-th/0311150.
- Matsumoto K., On Lorentzian paracontact manifolds,
Bull. Yamagata Univ. Natur. Sci. 12 (1989),
151-156.
- Molino P., Riemannian foliations, Progress in Mathematics, Vol. 73,
Birkhäuser Boston, Inc., Boston, MA, 1988.
- Moroianu A., Semmelmann U., Twistor forms on
Kähler manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
2 (2003), 823-845, math.DG/0204322.
- O'Neill B., Semi-Riemannian geometry. With applications to relativity,
Pure and Applied Mathematics, Vol. 103, Academic Press, New
York, 1983.
- Ooguri H., Vafa C., Geometry of N = 2 strings,
Nuclear Phys. B 361 (1991), 469-518.
- Penrose R., Naked singularities, Ann. New York Acad. Sci. 224 (1973), 125-134.
- Plyushchay M.S., On the nature of fermion-monopole
supersymmetry, Phys. Lett. B 485 (2000), 187-192, hep-th/0005122.
- Semmelmann U., Conformal Killing forms on Riemannian
manifolds, Math. Z. 245 (2003), 503-527, math.DG/0206117.
- Tanimoto M., The role of Killing-Yano tensors in
supersymmetric mechanics on a curved manifold, Nuclear Phys. B
442 (1995), 549-560, gr-qc/9501006.
- Vaman D., Visinescu M., Supersymmetries and constants of motion in
Taub-NUT spinning space,
Fortschr. Phys. 47 (1999), 493-514, hep-th/9805116.
- Yano K., Some remarks on tensor fields and curvature, Ann. of Math. (2) 55 (1952), 328-347.
|
|