|
SIGMA 5 (2009), 024, 11 pages arXiv:0903.0342
https://doi.org/10.3842/SIGMA.2009.024
Bäcklund Transformations for First and Second Painlevé Hierarchies
Ayman Hashem Sakka
Department of Mathematics, Islamic University of Gaza, P.O. Box 108, Rimal, Gaza, Palestine
Received November 25, 2008, in final form February 24, 2009; Published online March 02, 2009
Abstract
We give Bäcklund transformations for first and second
Painlevé hierarchies. These Bäcklund transformations are
generalization of known Bäcklund transformations of the first
and second Painlevé equations and they relate the considered
hierarchies to new hierarchies of Painlevé-type equations.
Key words:
Painlevé hierarchies; Bäcklund transformations.
pdf (200 kb)
ps (126 kb)
tex (11 kb)
References
- Airault H., Rational solutions of Painlevé equations, Stud. Appl. Math. 61 (1979), 31-53.
- Kudryashov N.A., The first and second Painlevé equations of higher order and
some relations between them, Phys. Lett. A
224 (1997), 353-360.
- Hone A.N.W., Non-autonomous Hénon-Heiles systems, Phys. D 118 (1998), 1-16, solv-int/9703005.
- Kudryashov N.A., Soukharev M.B.,
Uniformization and transcendence of solutions for the first and
second Painlevé hierarchies, Phys.
Lett. A 237 (1998), 206-216.
- Kudryashov N.A., Fourth-order analogies of the Painlevé equations,
J. Phys. A: Math. Gen. 35 (2002), 4617-4632.
- Kudryashov N.A., Amalgamations of the Painlevé equations,
J. Math. Phys. 44 (2003), 6160-6178.
- Mugan U., Jrad F., Painlevé test and the first Painlevé hierarchy,
J. Phys. A: Math. Gen. 32
(1999), 7933-7952.
- Mugan U., Jrad F., Painlevé test and higher order
differntial equations, J. Nonlinear Math. Phys. 9
(2002), 282-310, nlin.SI/0301043.
- Gordoa P.R., Pickering A., Nonisospectral scattering problems: a key to integrable
hierarchies, J. Math. Phys. 40 (1999), 5749-5786.
- Gordoa P.R., Joshi N., Pickering A., On a generalized 2+1
dispersive water wave hierarchy, Publ. Res. Inst. Math.
Sci. 37 (2001), 327-347.
- Sakka A., Linear problems and hierarchies of Painlevé
equations, J. Phys. A: Math. Theor. 42 (2009),
025210, 19 pages.
- Fokas A.S., Ablowitz M.J., On a unified approach to transformations and
elementary solutions of Painlevé equations,
J. Math. Phys. 23 (1982), 2033-2042.
- Okamoto K., Studies on the Painlevé equations. III. Second and
fourth Painlevé equations, PII and PIV, Math. Ann. 275
(1986), 221-255.
- Gordoa P. R., Joshi N., Pickering A., Mappings preserving locations of movable poles:
a new extension of the truncation method to ordinary differential equations,
Nonlinearity 12 (1999), 955-968, solv-int/9904023.
- Gromak V., Laine I., Shimomura S., Painlevé differential equations in
the complex plane, de Gruyter Studies in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin, 2002.
- Clarkson P.A., Joshi N., Pickering A., Bäcklund transformations for the second
Pianlevé hierarchy: a modified truncation approach,
Inverse Problems 15 (1999), 175-187, solv-int/9811014.
- Cosgrove C.M., Scoufis G., Painlevé classification of a
class of differential equations of the second order and second
degree, Stud. Appl. Math. 88 (1993), 25-87.
- Mugan U., Sakka A., Second-order second-degree Painlevé equations related
with Painlevé I-VI equations and Fuchsian-type transformations,
J. Math. Phys. 40 (1999), 3569-3587.
- Sakka A., Elshamy S., Bäcklund transformations
for fourth-order Painlevé-type equations, The Islamic
University Journal, Natural Science Series 14 (2006),
105-120.
- Cosgrove C. M., Higher-order Painlevé
equations in the polynomial class. I. Bureau symbol
P2, Stud. Appl. Math. 104 (2000), 1-65.
- Cosgrove C.M., Higher-order Painlevé
equations in the polynomial class. II. Bureau symbol
P1, Stud. Appl. Math. 116 (2006), 321-413.
- Sakka A., Bäcklund transformations for
fifth-order Painlevé equations, Z. Naturforsch. A 60 (2005), 681-686.
- Sakka A., Second-order fourth-degree Painlevé-type equations,
J. Phys. A: Math. Gen. 34 (2001), 623-631.
|
|