Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 5 (2009), 044, 31 pages      arXiv:0805.4678      https://doi.org/10.3842/SIGMA.2009.044

Quantum Symmetries for Exceptional SU(4) Modular Invariants Associated with Conformal Embeddings

Robert Coquereaux and Gil Schieber
Centre de Physique Théorique (CPT), Luminy, Marseille, France

Received December 24, 2008, in final form March 31, 2009; Published online April 12, 2009

Abstract
Three exceptional modular invariants of SU(4) exist at levels 4, 6 and 8. They can be obtained from appropriate conformal embeddings and the corresponding graphs have self-fusion. From these embeddings, or from their associated modular invariants, we determine the algebras of quantum symmetries, obtain their generators, and, as a by-product, recover the known graphs E4, E6 and E8 describing exceptional quantum subgroups of type SU(4). We also obtain characteristic numbers (quantum cardinalities, dimensions) for each of them and for their associated quantum groupoïds.

Key words: quantum symmetries; modular invariance; conformal field theories.

pdf (562 kb)   ps (650 kb)   tex (458 kb)

References

  1. Aldazabal G., Allekote I., Font A., Nuñez C., N = 2 coset compactifications with non-diagonal invariants, Internat. J. Modern Phys. A 7 (1992), 6273-6297, hep-th/9111018.
  2. Altschuler D., Bauer M., Itzykson C., The branching rules of conformal embeddings, Comm. Math. Phys. 132 (1990), 349-364.
  3. Bais F., Bouwknegt P., A classification of subgroup truncations of the bosonic string, Nuclear Phys. B 279 (1987), 561-570.
  4. Böckenhauer J., Evans D., Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors, Comm. Math. Phys. 213 (2000), 267-289, math.OA/9911239.
  5. Böckenhauer J., Evans D., Modular invariants, graphs and a-induction for nets of subfactors. II, Comm. Math. Phys. 200 (1999), 57-103, hep-th/9805023.
  6. Böckenhauer J., Evans D., Kawahigashi Y., Chiral structure of modular invariants for subfactors, Comm. Math. Phys. 210 (2000), 733-784, math.QA/9907149.
  7. Cappelli A., Itzykson C., Zuber J.-B., The ADE classification of minimal and A1(1) conformal invariant theories, Comm. Math. Phys. 13 (1987), 1-26.
  8. Coquereaux R., Notes on the quantum tetrahedron, Mosc. Math. J. 2 (2002), 41-80, hep-th/0011006.
  9. Coquereaux R., Schieber G., Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries, J. Geom. Phys. 42 (2002), 216-258, hep-th/0107001.
  10. Coquereaux R., Schieber G., Orders and dimensions for sl(2) or sl(3) module categories and boundary conformal field theories on a torus, J. Math. Phys. 48 (2007), 043511, 17 pages, math-ph/0610073.
  11. Coquereaux R., Schieber G., From conformal embeddings to quantum symmetries: an exceptional SU(4) example, J. Phys. Conf. Ser. 103 (2008), 012006, 24 pages, arXiv:0710.1397.
  12. Di Francesco P., Matthieu P., Sénéchal D., Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997.
  13. Di Francesco P., Zuber J.-B., SU(N) lattice integrable models associated with graphs, Nuclear Phys. B 338 (1990), 602-646.
  14. Drinfeld V.G., On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(`Q/Q), Algebra i Analiz 2 (1990), 149-181 (English transl.: Leningrad Math. J. 2 (1991), 829-860).
  15. Etingof P., On Vafa's theorem or tensor categories, Math. Res. Lett. 9 (2002), 651-657, math.QA/0207007.
  16. Etingof P., Ostrik V., Finite tensor categories, Mosc. Math. J. 4 (2004), 627-654, math.QA/0301027.
  17. Fuchs J., Schellekens B., Schweigert C., Quasi-Galois symmetries of the modular S-matrix, Comm. Math. Phys. 176 (1996), 447-465, hep-th/9412009.
  18. Fuchs J., Runkel I., Schweigert C., TFT construction of RCFT correlators. I. Partition functions, Nuclear Phys. B 646 (2002), 353-497, hep-th/0204148.
  19. Fuchs J. Runkel I., Schweigert C., TFT construction of RCFT correlators. II. Unoriented world sheets, Nuclear Phys. B 678 (2003), 511-637, hep-th/0306164.
  20. Hammaoui D., Schieber G., Tahri E.H., Higher Coxeter graphs associated to affine su(3) modular invariants, J. Phys. A: Math. Gen. 38 (2005), 8259-8286, hep-th/0412102.
  21. Isasi E., Schieber G., From modular invariants to graphs: the modular splitting method, J. Phys. A: Math. Theor. 40 (2007), 6513-6537, math-ph/0609064.
  22. Kac V.G., Peterson D.H., Spin and wedge representations of infinite-dimensional Lie algebras and groupss, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 3308-3312.
  23. Kac V.G., Peterson D.H., Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53 (1984), 125-264.
  24. Kac V.G., Wakimoto M., Modular and conformal invariance constraints in representation theory of affine algebras, Adv. in Math. 70 (1988), 156-236.
  25. Kazhdan D., Lusztig G., Tensor structures arising from affine Lie algebras. III, J. Amer. Math. Soc. 7 (1994), 335-381.
  26. Kuperberg G., Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996), 109-151, q-alg/9712003.
  27. Levstein F., Liberati J.I., Branching rules for conformal embeddings, Comm. Math. Phys. 173 (1995), 1-16.
  28. Longo R., Rehren K.-H., Nets of subfactors, Rev. Math. Phys. 7 (1995), 567-598, hep-th/9411077.
  29. Ocneanu A., Seminars, 1996, unpublished.
  30. Ocneanu A., Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors, Notes taken by S. Goto, Fields Institute Monographs, Editors Rajarama Bhat et al., AMS, 1999.
  31. Ocneanu A., The classification of subgroups of quantum SU(N), in Proceedings of Bariloche Summer School 2000 "Quantum symmetries in theoretical physics and mathematics" (January 10-21, 2000, S.C. de Bariloche), Editors R. Coquereaux, A. García and R. Trinchero R., Contemp. Math. 294 (2000), 133-160.
  32. Ocneanu A., Higher Coxeter systems, Talk at the Workshop "Subfactors and Algebraic Aspects of Quantum Field Theory" (December 4-8, 2000, MSRI), available at http://msri.org/publications/ln/msri/2000/subfactors/ocneanu/1/index.html.
  33. Ostrik V., Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), 177-206, math.QA/0111139.
  34. Petkova V.B., Zuber J.-B., The many faces of Ocneanu cells, Nuclear Phys. B 603 (2001), 449-496, hep-th/0101151.
  35. Petkova V.B., Zuber J.-B., From CFT to graphs, Nuclear Phys. B 463 (1996), 161-193, hep-th/9510175.
  36. Petkova V.B., Zuber J.-B., Conformal field theory and graphs, in Proceedings 21st International Colloquium on Group Theoretical Methods in Physics (July 15-20, 1996, Goslar), Physical Applications and Mathematical Aspects of Geometry, Groups, and Algebras, Editors H. D. Doebner, P. Nattermann and W. Scherer, World Scientific, Singapore, 1997, Vol. 2, 627-632, hep-th/9701103.
  37. Schellekens A. N., Meromorphic c = 24 conformal field theories, Comm. Math. Phys. 153 (1993), 159-185, hep-th/9205072.
  38. Schellekens A.N., Warner N.P., Conformal subalgebras of Kac-Moody algebras, Phys. Rev. D 34 (1986), 3092-3096.
  39. Schellekens A.N., Yankielowicz S., Simple currents, modular invariants and fixed points, Internat. J. Modern Phys. A 5 (1990), 2903-2952.
  40. Verstegen D., Conformal embeddings, rank-level duality and exceptional modular invariants, Comm. Math. Phys. 137 (1991), 567-586.
  41. Wolf J. A., The geometry and structure of isotropy irreducible homogeneous spaces, Acta Math. 120 (1968), 59-148, Erratum, Acta Math. 152 (1984), 141-142.
  42. Xu F., New braided endomorphisms from conformal inclusions, Comm. Math. Phys. 192 (1998), 349-403.
  43. Xu F., An application of mirror extensions, arXiv:0710.4116.


Previous article   Next article   Contents of Volume 5 (2009)