Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 5 (2009), 060, 63 pages      arXiv:0710.5149      https://doi.org/10.3842/SIGMA.2009.060
Contribution to the Special Issue on Kac-Moody Algebras and Applications

Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix

Sofiane Bouarroudj a, Pavel Grozman b and Dimitry Leites c
a) Department of Mathematics, United Arab Emirates University, Al Ain, PO. Box: 17551, United Arab Emirates
b) Equa Simulation AB, Stockholm, Sweden
c) Department of Mathematics, University of Stockholm, Roslagsv. 101, Kräftriket hus 6, SE-106 91 Stockholm, Sweden

Received September 17, 2008, in final form May 25, 2009; Published online June 11, 2009

Abstract
Finite dimensional modular Lie superalgebras over algebraically closed fields with indecomposable Cartan matrices are classified under some technical, most probably inessential, hypotheses. If the Cartan matrix is invertible, the corresponding Lie superalgebra is simple otherwise the quotient of the derived Lie superalgebra modulo center is simple (if its rank is greater than 1). Eleven new exceptional simple modular Lie superalgebras are discovered. Several features of classic notions, or notions themselves, are clarified or introduced, e.g., Cartan matrix, several versions of restrictedness in characteristic 2, Dynkin diagram, Chevalley generators, and even the notion of Lie superalgebra if the characteristic is equal to 2. Interesting phenomena in characteristic 2: (1) all simple Lie superalgebras with Cartan matrix are obtained from simple Lie algebras with Cartan matrix by declaring several (any) of its Chevalley generators odd; (2) there exist simple Lie superalgebras whose even parts are solvable. The Lie superalgebras of fixed points of automorphisms corresponding to the symmetries of Dynkin diagrams are also listed and their simple subquotients described.

Key words: modular Lie superalgebra, restricted Lie superalgebra; Lie superalgebra with Cartan matrix; simple Lie superalgebra.

pdf (876 kb)   ps (841 kb)   tex (786 kb)

References

  1. Benkart G., Gregory Th., Premet A., The recognition theorem for graded Lie algebras in prime characteristic, Mem. Amer. Math. Soc. 197 (2009), no. 920, math.RA/0508373.
  2. Bouarroudj S., Grozman P., Lebedev A., Leites D., Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix, in preparation.
  3. Bouarroudj S., Grozman P., Leites D., Cartan matrices and presentations of Elduque and Cunha simple Lie superalgebras, see [37], math.RT/0611391.
  4. Bouarroudj S., Grozman P., Leites D., Cartan matrices and presentations of the exceptional simple Elduque Lie superalgebra, see [37], math.RT/0611392.
  5. Bouarroudj S., Grozman P., Leites D., New simple modular Lie superalgebras as generalized prolongations, Funktsional. Anal. i Prilozhen. 42 (2008), no. 3, 1-9 (English transl.: Funct. Anal. Appl. 42 (2008), no. 3, 161-168, math.RT/0704.0130.
  6. Bouarroudj S., Grozman P., Leites D., Deformations of the simple symmetric modular Lie superalgebras, see [37], in preparation.
  7. Bouarroudj S., Grozman P., Leites D., New simple modular Lie algebras in characteristic 2 as generalized prolongs, in preparation.
  8. Bourbaki N., Lie groups and Lie algebras, Chapters 4-6, Translated from the 1968 French original by Andrew Pressley, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002.
  9. Brown G., Properties of a 29-dimensional simple Lie algebra of characteristic three, Math. Ann. 261 (1982), 487-492.
  10. Cartan É., Über die einfachen Transformationsgrouppen, Leipziger Berichte (1893), 395-420, Reprinted in uvres complètes, Partie II (French) [Complete works. Part II], Algèbre, systèmes différentiels et problèmes d'équivalence, Éditions du Centre National de la Recherche Scientifique (CNRS), Paris, 1984.
  11. Chapovalov D., Chapovalov M., Lebedev A., Leites D., The classification of almost affine (hyperbolic) Lie superalgebras, J. Nonlinear Math. Phys., to appear, arXiv:0906.1860.
  12. Cohen A.M., Roozemond D.A., Computing Chevalley bases in small characteristics, arXiv:0901.1717.
  13. Cunha I., Elduque A., An extended Freudenthal magic square in characteristic 3, J. Algebra 317 (2007), 471-509, math.RA/0605379.
  14. Cunha I., Elduque A., The extended Freudenthal magic square and Jordan algebras, Manuscripta Math. 123 (2007), 325-351, math.RA/0608191.
  15. Djokovic D.Z., Hochschild G., Semisimplicity of 2-graded Lie algebras. II, Illinois J. Math. 20 (1976), 134-143.
    Djokovi\'c D.Z., Classification of some 2-graded Lie algebras, J. Pure Appl. Algebra 7 (1976), 217-230.
    Djokovi\'c D.Z., Isomorphism of some simple 2-graded Lie algebras, Canad. J. Math. 29 (1977), 289-294.
  16. Dzhumadildaev A., 10-commutators, 13-commutators, and odd derivations, J. Nonlinear Math. Phys. 15 (2008), 87-103, math-ph/0603054.
  17. Elduque A., New simple Lie superalgebras in characteristic 3, J. Algebra 296 (2006), 196-233, math.RA/0412395.
  18. Elduque A., Some new simple modular Lie superalgebras, Pacific J. Math. 231 (2007), 337-359, math.RA/0512654.
  19. Elduque A., Models of some simple modular Lie superalgebras, Pacific J. Math. 240 (2009), 49-83, arXiv:0805.1304.
  20. Feigin B., Leites D., Serganova V., Kac-Moody superalgebras, in Group-Theoretical Methods in Physics (Zvenigorod, 1982), Editors M. Markov et al., Nauka, Moscow, 1983, Vol. 1, 274-278 (English transl.: Harwood Academic Publ., Chur, 1985, Vols. 1-3, 631-637).
  21. Frappat L., Sciarrino A., Sorba P., Dictionary on Lie Superalgebras, with 1 CD-ROM (Windows, Macintosh and UNIX), Academic Press, Inc., San Diego, CA, 2000, hep-th/9607161.
  22. Freund P., Kaplansky I., Simple supersymmetries, J. Math. Phys. 17 (1976), 228-231.
  23. Frohardt D., Griess R.L. Jr., Automorphisms of modular Lie algebras, Nova J. Algebra Geom. 1 (1992), 339-345.
  24. Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, Vol. 129, Readings in Mathematics, Springer-Verlag, New York, 1991.
  25. Grozman P., SuperLie, http://www.equaonline.com/math/SuperLie.
  26. Hoyt C., Serganova V., Classification of finite-growth general Kac-Moody superalgebras, Comm. Algebra 35 (2007), 851-874, arXiv:0810.2637.
  27. Jacobson N., Lie algebras, Dover Publications, Inc., New York, 1979.
  28. Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  29. Kac V.G., Lie superalgebras, Adv. Math. 26 (1977), 8-96.
  30. Kac V.G., Corrections to: ''Exponentials in Lie algebras of characteristic p'' [Izv. Akad. Nauk SSSR 35 (1971), no. 4, 762-788] by B. Yu. Veisfeiler and V.G. Kac, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), no. 4, 224 (English transl.: Russian Acad. Sci. Izv. Math. 45 (1995), no. 1, 229).
  31. Kaplansky I., Graded Lie algebras, Preprints, University of Chicago, Chicago, 1975, available at http://justpasha.org/math/links/subj/lie/kaplansky.
  32. Kaplansky I., Superalgebras, Pacific J. Math. 86 (1980), 93-98.
  33. Kochetkov Yu., Leites D., Simple finite dimensional Lie algebras in characteristic 2 related to superalgebras and on a notion of finite simple group, in Proceedings of the International Conference on Algebra (Novosibirsk, August 1989), Editors L.A. Bokut, Yu.L. Ershov and A.I. Kostrikin, Contemp. Math., Vol. 131, Part 2, Amer. Math. Soc., Providence, RI, 1992, 59-67.
  34. Lebedev A., Non-degenerate bilinear forms in characteristic 2, related contact forms, simple Lie algebras and superalgebras, math.AC/0601536.
  35. Leites D., Towards classification of simple finite dimensional modular Lie superalgebras in characteristic p, J. Prime Res. Math. 3 (2007), 101-110, arXiv:0710.5638.
  36. Leites D. (Editor), Seminar on Supermanifolds, Reports of the Department of Mathematics of Stockholm University, nn. 1-34, 1986-1990, 2100 pages (a version in Russian is to appear in MCCME, 2009; a version in English in preparation).
  37. Leites D. (Editor), Representation theory, Vol. 2: Nonholonomic distributions in representation theory. Quest for simple modular Lie algebras (S. Bouarroudj, B. Clarke, P. Grozman, A. Lebedev, D. Leites, I. Shchepochkina), A. Salam School of Mathematical Sciences, Lahore, 2009.
  38. Leites D., Saveliev M. V., Serganova V.V., Embeddings of osp(N|2) and completely integrable systems, in Proceedings of International Seminar Group-Theoretical Methods in Physics (Yurmala, May 1985), Editors V. Dodonov and V. Man'ko, Nauka, Moscow, 1986, 377-394 (an enlarged version in English is published by VNU Sci Press, 1986, 255-297).
  39. Leites D., Shchepochkina I., Classification of simple Lie superalgebras of vector fields, preprint MPIM-2003-28, available at http://www.mpim-bonn.mpg.de.
  40. Leites D., Shchepochkina I., How the antibracket should be quantized?, Teoret. Mat. Fiz. 126 (2001), 339-369 (English transl.: Theoret. and Math. Phys. 126 (2001), 281-306), math-ph/0510048.
  41. Onishchik A.L., Vinberg È.B., Lie groups and algebraic groups, Translated from the Russian and with a preface by D.A. Leites, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990.
  42. Premet A., Strade H., Simple Lie algebras of small characteristic VI. Completion of the classification, arXiv:0711.2899.
  43. ftp.mccme.ru/users/protopopov/dyno
  44. Ray U., Automorphic forms and Lie superalgebras, Algebras and Applications, Vol. 5, Springer, Dordrecht, 2006.
  45. Nahm W., Rittenberg V., Scheunert M., The classification of graded Lie algebras, Phys. Lett. B 61 (1976), 383-384.
    Scheunert M., Nahm W., Rittenberg V., Classification of all simple graded Lie algebras whose Lie algebra is reductive. I, J. Math. Phys. 17 (1976), 1626-1639.
    Scheunert M., Nahm W., Rittenberg V., Classification of all simple graded Lie algebras whose Lie algebra is reductive. II. Construction of the exceptional algebras, J. Math. Phys. 17 (1976), 1640-1644.
  46. Sergeev A., Orthogonal polynomials and Lie superalgebras, math.RT/9810110.
  47. Serganova V., Automorphisms of simple Lie superalgebras, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 585-598 (English transl.: Math. USSR-Izv. 24 (1985), 539-551).
  48. Serganova V., On generalizations of root systems, Comm. Algebra 24 (1996), 4281-4299.
  49. Shchepochkina I., How to realize Lie algebras by vector fields, Teoret. Mat. Fiz. 147 (2006), 450-469 (English transl.: Theoret. and Math. Phys. 147 (2006), 821-838), math.RT/0509472.
  50. Skryabin S.M., A contragredient 29-dimensional Lie algebra of characteristic 3, Sibirsk. Mat. Zh. 34 (1993), no. 3, 171-178 (English transl.: Siberian Math. J. 34 (1993), no. 3, 548-554).
  51. Steinberg R., Lectures on Chevalley groups, Notes prepared by John Faulkner and Robert Wilson, Yale University, New Haven, Conn., 1968.
  52. Strade H., Simple Lie algebras over fields of positive characteristic. I. Structure theory, de Gruyter Expositions in Mathematics, Vol. 38, Walter de Gruyter & Co., Berlin, 2004.
  53. van de Leur J., A classification of contragredient Lie superalgebras of finite growth, Comm. Algebra 17 (1989), 1815-1841.
  54. Weisfeiler B.Ju., Kac V.G., Exponentials in Lie algebras of characteristic p, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 762-788 (in Russian).


Previous article   Next article   Contents of Volume 5 (2009)