Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 5 (2009), 073, 26 pages      arXiv:0907.2584      https://doi.org/10.3842/SIGMA.2009.073

On Linear Differential Equations Involving a Para-Grassmann Variable

Toufik Mansour a and Matthias Schork b
a) Department of Mathematics, University of Haifa, 31905 Haifa, Israel
b) Camillo-Sitte-Weg 25, 60488 Frankfurt, Germany

Received May 01, 2009, in final form July 05, 2009; Published online July 15, 2009

Abstract
As a first step towards a theory of differential equations involving para-Grassmann variables the linear equations with constant coefficients are discussed and solutions for equations of low order are given explicitly. A connection to n-generalized Fibonacci numbers is established. Several other classes of differential equations (systems of first order, equations with variable coefficients, nonlinear equations) are also considered and the analogies or differences to the usual (''bosonic'') differential equations discussed.

Key words: para-Grassmann variables; linear differential equations.

pdf (358 kb)   ps (225 kb)   tex (27 kb)

References

  1. Schwinger J., The theory of quantized fields. IV, Phys. Rev. 92 (1953), 1283-1299.
  2. Martin J.L., The Feynman principle for a Fermi system, Proc. Roy. Soc. London. Ser. A 251 (1959), 543-549.
  3. Berezin F., The method of second quantization, Pure and Applied Physics, Vol. 24, Academic Press, New York - London, 1966.
  4. Kane G., Shifman M. (Editors), The supersymmetric world. The beginnings of the theory, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
  5. Wess J., Bagger J., Supersymmetry and supergravity, 2nd ed., Princeton Series in Physics, Princeton University Press, Princeton, 1992.
  6. Freund P., Introduction to supersymmetry and supergravity, 2nd ed., World Scientific Publishing Co., Inc., Teaneck, NJ, 1990.
  7. DeWitt B., Supermanifolds, 2nd ed., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1992.
  8. Manin Y.I., Gauge field theory and complex geometry, Springer-Verlag, Berlin, 1988.
  9. Rogers A., Supermanifolds. Theory and applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.
  10. Green H.S., A generalized method of field quantization, Phys. Rev. 90 (1953), 270-273.
  11. Kalnay A.J., A note on Grassmann algebras, Rep. Math. Phys. 9 (1976), 9-13.
  12. Omote M., Kamefuchi S., Para-Grassmann algebras and para-Fermi systems, Lett. Nuovo Cimento 24 (1979), 345-350.
  13. Omote M., Kamefuchi S., Parafields and supergroup transformations, Nuovo Cimento A 50 (1980), 21-40.
  14. Ohnuki Y., Kamefuchi S., Para-Grassmann algebras with applications to para-Fermi systems, J. Math. Phys. 21 (1980), 609-616.
  15. Ohnuki Y., Kamefuchi S., Quantum field theory and parastatistics, Springer-Verlag, Berlin, 1982.
  16. Gershun V.D., Tkach V.I., Para-Grassmann variables and description of massive particles with spin equalling one, Ukr. Fiz. Zh. 29 (1984), 1620-1627 (in Russian).
  17. Zheltukhin A.A., Para-Grassmann extension of the Neveu-Schwarz-Ramond algebra, Theoret. and Math. Phys. 71 (1987), 491-496.
  18. Rubakov V.A., Spirodonov V.P., Parasupersymmetric quantum mechanics, Modern Phys. Lett. A 3 (1988), 1337-1347.
  19. Yamaleev R.M., Elements of cubic quantum mechanics, JINR Comm. P2-88-147, 1988 (in Russian).
  20. Durand S., Floreanini R., Mayrand M., Vinet L., Conformal parasuperalgebras and their realizations on the line, Phys. Lett. B 233 (1989), 158-162.
  21. Durand S., Mayrand M., Spirodonov V.P., Vinet L., Higher order parasupersymmetric quantum mechanics, Modern Phys. Lett. A 6 (1991), 3163-3170.
  22. Fleury N., Rausch de Traubenberg M., Yamaleev R.M., Matricial representations of rational powers of operators and para-Grassmann extension of quantum mechanics, Internat. J. Modern Phys. A 10 (1995), 1269-1280.
  23. Yamaleev R.M., Fractional power of momenta and para-Grassmann extension of Pauli equation, Adv. Appl. Clifford Algebras 7 (1997), suppl., 279-288.
  24. Yamaleev R.M., Parafermionic extensions of Pauli and Dirac equations, Hadronic J. 26 (2003), 247-258.
  25. Durand S., Factional supersymmetry and quantum mechanics, Phys. Lett. B 312 (1993), 115-120, hep-th/9305128.
  26. Durand S., Extended fractional supersymmetric quantum mechanics, Modern Phys. Lett. A 8 (1993), 1795-1804, hep-th/9305129.
  27. Durand S., Fractional superspace formulation of generalized mechanics, Modern Phys. Lett. A 8 (1993), 2323-2334, hep-th/9305130.
  28. Azcárraga J.A., Macfarlane A.J., Group theoretical foundations of fractional supersymmetry, J. Math. Phys. 37 (1996), 1115-1127, hep-th/9506177.
  29. Dunne R.S., Macfarlane A.J., de Azcárraga J.A., Pérez Bueno J.C., Geometrical foundations of fractional supersymmetry, Internat. J. Modern Phys. A 12 (1997), 3275-3305, hep-th/9610087.
  30. Ahn C., Bernard D., LeClair A., Fractional supersymmetries in perturbed coset CFTs and integrable soliton theory, Nuclear Phys. B 346 (1990), 409-439.
  31. Saidi E.H., Sedra M.B., Zerouaoui J., On D = 2(1/3,1/3) supersymmetric theories. I, Classical Quantum Gravity 12 (1995), 1567-1580.
  32. Saidi E.H., Sedra M.B., Zerouaoui J., On D = 2(1/3,1/3) supersymmetric theories. II, Classical Quantum Gravity 12 (1995), 2705-2714.
  33. Fleury N., Rausch de Traubenberg M., Local fractional supersymmetry for alternative statistics, Modern Phys. Lett. A 11 (1996), 899-913, hep-th/9510108.
  34. Perez A., Rausch de Traubenberg M., Simon P., 2D-fractional supersymmetry and conformal field theory for alternative statistics, Nuclear Phys. B 482 (1996), 325-344, hep-th/9603149.
  35. Rausch de Traubenberg M., Simon P., 2D-fractional supersymmetry and conformal field theory for alternative statistics, Nuclear Phys. B 517 (1997), 485-505, hep-th/9606188.
  36. Kheirandish F., Khorrami M., Two-dimensional fractional supersymmetric conformal field theories and the two point functions, Internat. J. Modern Phys. A 16 (2001), 2165-2173, hep-th/0004154.
  37. Kheirandish F., Khorrami M., Logarithmic two-dimensional spin 1/3 fractional supersymmetric conformal field theories and the two point functions, Eur. Phys. J. C Part. Fields 18 (2001), 795-797, hep-th/0007013.
  38. Kheirandish F., Khorrami M., Two-dimensional fractional supersymmetric conformal and logarithmic conformal field theories and the two point functions, Eur. Phys. J. C Part. Fields 20 (2001), 593-597, hep-th/0007073.
  39. Sedra M.B., Zerouaoui J., Heterotic D = 2 (1/3, 0) SUSY models, arXiv:0903.1316.
  40. Durand S., Fractional superspace formulation of generalized super-Virasoro algebras, Modern Phys. Lett. A 7 (1992), 2905-2911, hep-th/9205086.
  41. Filippov A.T., Isaev A.P., Kurdikov A.B., Para-Grassmann extensions of the Virasoro algebra, Internat. J. Modern Phys. A 8 (1993), 4973-5003, hep-th/9212157.
  42. Filippov A.T., Isaev A.P., Kurdikov A.B., Para-Grassmann analysis and quantum groups, Modern Phys. Lett. A 7 (1992), 2129-2141, hep-th/9204089.
  43. Rausch de Traubenberg M., Clifford algebras of polynomials, generalized Grassmann algebras and q-deformed Heisenberg algebras, Adv. Appl. Clifford Algebras 4 (1994), 131-144, hep-th/9404057.
  44. Abdesselam B., Beckers J., Chakrabarti A., Debergh N., On a deformation of sl(2) with para-Grassmannian variables, J. Phys. A: Math. Gen. 29 (1996), 6729-6736, q-alg/9507008.
  45. Isaev A.P., Para-Grassmann integral, discrete systems and quantum groups, Internat. J. Modern Phys. A 12 (1997), 201-206, q-alg/9609030.
  46. Plyushchay M.A., R-deformed Heisenberg algebra, Modern Phys. Lett. A 11 (1996), 2953-2964, hep-th/9701065.
  47. Plyushchay M.A., Deformed Heisenberg algebra with reflection, Nuclear Phys. B 491 (1997), 619-634, hep-th/9701091.
  48. Alvarez-Moraga N., Coherent and squeezed states of quantum Heisenberg algebras, J. Phys. A: Math. Gen. 38 (2005), 2375-2398, math-ph/0503055.
  49. Cabra D.C., Moreno E.F., Tanasa A., Para-Grassmann variables and coherent states, SIGMA 2 (2006), 087, 8 pages, hep-th/0609217.
  50. Rausch de Traubenberg M., Fleury N., Beyond spinors, in Leite Lopes Festschrift, Editors N. Fleury et al., World Scientific Publishing Co., Singapore, 1988, 79-101.
  51. Filippov A.T., Isaev A.P., Kurdikov A.B., Para-Grassmann differential calculus, Theoret. and Math. Phys. 94 (1993), 150-165, hep-th/9210075.
  52. Cugliandolo L.F., Lozano G.S., Moreno E.F., Schaposnik F.A., A note on Gaussian integrals over para-Grassmann variables, Internat. J. Modern Phys. A 19 (2004), 1705-1714, hep-th/0209172.
  53. Schork M., Algebraical, combinatorial and analytical properties of paragrassmann variables, Internat. J. Modern Phys. A 20 (2005), 4797-4819.
  54. Rausch de Traubenberg M., Clifford algebras, supersymmetry and Z(n) symmetries: applications in field theory, hep-th/9802141.
  55. van der Put M., Singer M.F., Galois theory of linear differential equations, Springer-Verlag, Berlin, 2003.
  56. Miles E.P., Generalized Fibonacci numbers and associated matrices, Amer. Math. Monthly 67 (1960), 745-752.
  57. Levesque C., On mth order linear recurrences, Fibonacci Quart. 23 (1985), 290-293.
  58. Lee G.-Y., Lee S.-G., Kim J.-S., Shin H.-G., The Binet formula and representations of k-generalized Fibonacci numbers, Fibonacci Quart. 39 (2001), 158-164.


Previous article   Next article   Contents of Volume 5 (2009)