| 
 SIGMA 5 (2009), 094, 21 pages      arXiv:0906.0560     
https://doi.org/10.3842/SIGMA.2009.094 
Contribution to the Special Issue “Élie Cartan and Differential Geometry” 
On Tanaka's Prolongation Procedure for Filtered Structures of Constant Type
Igor Zelenko
 Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA
 
 
Received June 02, 2009, in final form September 29, 2009;  Published online October 06, 2009 
Abstract
 
We present Tanaka's prolongation procedure for filtered structures on manifolds discovered in [Tanaka N.,
J. Math. Kyoto. Univ. 10 (1970), 1-82] in a spirit
  of Singer-Sternberg's  description of  the prolongation of usual G-structures
  [Singer I.M., Sternberg S., J. Analyse Math. 15 (1965), 1-114;
  Sternberg S., Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964].
 This approach gives a transparent point of view on the Tanaka constructions avoiding many technicalities of the original Tanaka paper.
  
 Key words:
G-structures; filtered structures; generalized Spencer operator; prolongations. 
pdf (321 kb)  
ps (220 kb)  
tex (25 kb)
 
 
References
 
- Cartan É.,
 Les systémes de Pfaff á cinq variables et les équations aux dérivées partielles du second ordre,
Ann. Sci. École Norm. Sup. (3) 27 (1910), 109-192
(reprinted in his Oeuvres completes, Partie II, Vol. 2, Paris, Gautier-Villars, 1953, 927-1010).
 
- Cartan É.,
Sur les variétés à connexion projective,
Bull. Soc. Math. France 54 (1924), 205-241.
 
- Kuzmich O.,
Graded nilpotent Lie algebras in low dimensions,
Lobachevskii J. Math. 3 (1999), 147-184.
 
- Morimoto T.,
Geometric structures on filtered manifolds,
Hokkaido Math. J. 22 (1993), 263-347.
 
- Morimoto T.,
Lie algebras, geometric structures, and differential equations on filtered manifolds,
in Lie Groups, Geometric Structures and Differential Equations - One Hundred Years after Sophus Lie (Kyoto/Nara, 1999),
Adv. Stud. Pure Math., Vol. 37, Math. Soc. Japan, Tokyo, 2002, 205-252.
 
- Morimoto T.,
Cartan connection associated with a subriemannian structure,
Differential Geom. Appl. 26 (2008), 75-78.
 
- Singer I.M., Sternberg S.,
The infinite groups of Lie and Cartan. I. The transitive groups,
J. Analyse Math. 15 (1965), 1-114.
 
- Spencer D.C.,
Overdetermined systems of linear partial differential equations,
Bull. Amer. Math. Soc. 75 (1969), 179-239.
 
- Sternberg S.,
Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.
 
- Tanaka N.,
On differential systems, graded Lie  algebras and pseudogroups,
J. Math. Kyoto. Univ. 10 (1970), 1-82.
 
- Tanaka N.,
On the equivalence problems associated with simple graded Lie algebras,
Hokkaido Math. J. 8 (1979), 23-84.
 
- Tresse A.,
Détermination des invariants ponctuels de l'équation différentielle ordinaire du second ordre y" = w(x, y, y'),
S. Hirkei, Leipzig, 1896.
 
- Tresse A.,
Sur les invariants différentielles des groupes continus de transformations,
Acta Math. 18 (1894), 1-88.
 
- Yamaguchi K.,
Differential systems associated with simple graded Lie algebras, in Progress in Differential Geometry,
Adv. Stud. Pure Math., Vol. 22, Math. Soc. Japan, Tokyo, 1993, 413-494.
 
 
 | 
 |