|
SIGMA 5 (2009), 101, 7 pages arXiv:0909.4455
https://doi.org/10.3842/SIGMA.2009.101
On a Whitham-Type Equation
Sergei Sakovich
Institute of Physics, National Academy of Sciences, 220072 Minsk, Belarus
Received September 27, 2009, in final form November 05, 2009; Published online November 08, 2009
Abstract
The Hunter-Saxton equation and the Gurevich-Zybin system are considered as two mutually non-equivalent representations of one and the same Whitham-type equation, and all their common solutions are obtained exactly.
Key words:
nonlinear PDEs; transformations; general solutions.
pdf (176 kb)
ps (106 kb)
tex (9 kb)
References
- Prykarpatsky A.K., Prytula M.M.,
The gradient-holonomic integrability analysis of a Whitham-type nonlinear dynamical model for a relaxing medium with spatial memory,
Nonlinearity 19 (2006), 2115-2122.
- Bogoliubov N.N. Jr., Prykarpatsky A.K., Gucwa I., Golenia J., Analytical properties of an Ostrovsky-Whitham type dynamical system for a relaxing medium with spatial memory and its integrable regularization, arXiv:0902.4395.
- Sakovich A., Sakovich S.,
On transformations of the Rabelo equations, SIGMA 3 (2007), 086, 8 pages,
arXiv:0705.2889.
- Hunter J.K., Saxton R.,
Dynamics of director fields,
SIAM J. Appl. Math. 51 (1991), 1498-1521.
- Hunter J.K., Zheng Y.,
On a completely integrable nonlinear hyperbolic variational equation,
Phys. D 79 (1994), 361-386.
- Dai H.-H., Pavlov M.,
Transformations for the Camassa-Holm equation, its high-frequency limit and the Sinh-Gordon equation,
J. Phys. Soc. Japan 67 (1998), 3655-3657.
- Pavlov M.V.,
The Calogero equation and Liouville-type equations,
Theoret. and Math. Phys. 128 (2001), 927-932,
nlin.SI/0101034.
- Morozov O.I.,
Contact equivalence of the generalized Hunter-Saxton equation and the Euler-Poisson equation, math-ph/0406016.
- Olver P.J., Rosenau P.,
Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support,
Phys. Rev. E 53 (1996), 1900-1906.
- Beals R., Sattinger D.H., Szmigielski J.,
Inverse scattering solutions of the Hunter-Saxton equation,
Appl. Anal. 78 (2001), 255-269.
- Hunter J.K., Zheng Y.X.,
On a nonlinear hyperbolic variational equation. I. Global existence of weak solutions,
Arch. Rational Mech. Anal. 129 (1995), 305-353.
- Bressan A., Constantin A.,
Global solutions of the Hunter-Saxton equation,
SIAM J. Math. Anal. 37 (2005), 996-1026,
math.AP/0502059.
- Reyes E.G.,
The soliton content of the Camassa-Holm and Hunter-Saxton equations,
in Proceedinds of Fifth International Conference "Symmetry in
Nonlinear Mathematical Physics" (July 9-15, 2001, Kyiv),
Editors A.G. Nikitin, V.M. Boyko and R.O. Popovych,
Proceedings of Institute
of Mathematics, Kyiv 43 (2002), Part 1, 201-208.
- Lenells J.,
The Hunter-Saxton equation: a geometric approach,
SIAM J. Math. Anal. 40 (2008), 266-277.
- Sakovich S.Yu.,
On conservation laws and zero-curvature representations of the Liouville equation,
J. Phys. A: Math. Gen. 27 (1994), L125-L129.
- Olver P.J.,
Applications of Lie groups to differential equations, 2nd ed., Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York, 1993.
- Gurevich A.V., Zybin K.P.,
Nondissipative gravitational turbulence,
Soviet Phys. JETP 67 (1988), 1-12.
- Gurevich A.V., Zybin K.P.,
Large-scale structure of the Universe. Analytic theory,
Soviet Phys. Usp. 38 (1995), 687-722.
- Pavlov M.V.,
The Gurevich-Zybin system,
J. Phys. A: Math. Gen. 38 (2005), 3823-3840,
nlin.SI/0412072.
- Davidson R.C.,
Methods in nonlinear plasma theory, Academic Press, New York, 1972.
- Brunelli J.C., Das A.,
On an integrable hierarchy derived from the isentropic gas dynamics,
J. Math. Phys. 45 (2004), 2633-2645,
nlin.SI/0401009.
|
|