|
SIGMA 5 (2009), 107, 24 pages arXiv:0902.1106
https://doi.org/10.3842/SIGMA.2009.107
On Projective Equivalence of Univariate Polynomial Subspaces
Peter Crooks a and Robert Milson b
a) Department of Mathematics, University of Toronto,
Toronto, Ontario, Canada M5S 2E4
b) Department of Mathematics and Statistics, Dalhousie
University, Halifax, Nova Scotia, Canada B3H 3J5
Received June 05, 2009, in final form December 03, 2009; Published online December 06, 2009
Abstract
We pose and solve the equivalence problem for subspaces of Pn,
the (n+1) dimensional vector space of univariate polynomials of
degree ≤ n. The group of interest is SL2 acting by
projective transformations on the Grassmannian variety GkPn
of k-dimensional subspaces. We establish the equivariance of the
Wronski map and use this map to reduce the subspace equivalence
problem to the equivalence problem for binary forms.
Key words:
polynomial subspaces; projective equivalence.
pdf (341 kb)
ps (215 kb)
tex (28 kb)
References
- Abdesselam A., Chipalkatti J.,
On the Wronskian combinants of binary forms,
J. Pure Appl. Algebra 210 (2007), 43-61,
math.AG/0507488.
- Chipalkatti J., Geramita A.,
On parameter spaces for Artin level algebras,
Michigan Math. J. 51 (2003), 187-207,
math.AG/0204017.
- Berchenko I., Olver P.J.,
Symmetries of polynomials,
in Symbolic Computation in Algebra, Analysis, and Geometry (Berkeley, CA, 1998),
J. Symbolic Comput. 29 (2000), 485-514.
- Eremenko A., Gabrielov A.,
The Wronski map and Grassmannians of real codimension 2 subspaces,
Comput. Methods Funct. Theory 1 (2001), 1-25.
- Eastwood M., Michor P.,
Some remarks on the Plücker relations,
in The Proceedings of the 19th Winter School "Geometry and Physics" (Srni, 1999),
Rend. Circ. Mat. Palermo (2) Suppl. (2000), no. 63, 85-88,
math.AG/9905090.
- Eisenbud D., Harris J.,
Divisors on general curves and cuspidal rational curves,
Invent. Math. 74 (1983), 371-418.
- Finkel F., Kamran N.,
The Lie algebraic structure of differential operators admitting invariant spaces of polynomials,
Adv. in Appl. Math. 20 (1998), 300-322,
q-alg/9612027.
- Fulton W.,
Young tableaux. With applications to representation theory and geometry,
London Mathematical Society Student Texts, Vol. 35, Cambridge University Press, Cambridge, 1997.
- Gómez-Ullate D., Kamran N., Milson R.,
Quasi-exact solvability and the direct approach to invariant subspaces,
J. Phys. A: Math. Gen. 38 (2005), 2005-2019,
nlin.SI/0401030.
- Gómez-Ullate D., Kamran N., Milson R.,
An extension of Böchner's problem: exceptional invariant subspaces,
J. Approx. Theory, to appear,
arXiv:0805.3376.
- Gómez-Ullate D., Kamran N., Milson R.,
An extended class of orthogonal polynomials defined by a Sturm-Liouville problem,
J. Math. Anal. Appl. 359 (2009), 352-367,
arXiv:0807.3939.
- Griffiths P.A., Harris J.,
Principles of algebraic geometry, 2nd ed., John Wiley & Sons, New York, 1994.
- Hilbert D.,
Theory of algebraic invariants,
Cambridge University Press, Cambridge, 1993.
- Kharlamov V., Sottile F.,
Maximally inflected real rational curves,
Mosc. Math. J. 3 (2003), 947-987,
math.AG/0206268.
- Kung J.P.S., Rota G.-R.,
The invariant theory of binary forms,
Bull. Amer. Math. Soc. (N.S.) 10 (1984), 27-85.
- Mukhin E., Tarasov V., Varchenko A.,
The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz,
Ann. Math. (2) 170 (2009), 863-881,
math.AG/0512299.
- Olver P.J., Classical invariant theory,
London Mathematical Society Student Texts, Vol. 44, Cambridge University Press, Cambridge, 1999.
- Olver P.J., Joint invariant signatures,
Found. Comput. Math. 1 (2001), 3-67.
- Scherbak I.,
Rational functions with prescribed critical points,
Geom. Funct. Anal. 12 (2002), 1365-1380,
math.QA/0205168.
Scherbak I.,
A theorem of Heine-Stieltjes, the Wronski map, and Bethe vectors in the slp Gaudin model,
math.AG/0211377.
- Shafarevich I.R.,
Basic algebraic geometry, Springer-Verlag, Berlin - New York, 1977.
|
|