Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 6 (2010), 006, 13 pages      arXiv:0802.2438      https://doi.org/10.3842/SIGMA.2010.006

Peterson's Deformations of Higher Dimensional Quadrics

Ion I. Dincă
Faculty of Mathematics and Informatics, University of Bucharest, 14 Academiei Str., 010014, Bucharest, Romania

Received July 13, 2009, in final form January 16, 2010; Published online January 20, 2010

Abstract
We provide the first explicit examples of deformations of higher dimensional quadrics: a straightforward generalization of Peterson's explicit 1-dimensional family of deformations in C3 of 2-dimensional general quadrics with common conjugate system given by the spherical coordinates on the complex sphere S2C3 to an explicit (n–1)-dimensional family of deformations in C2n–1 of n-dimensional general quadrics with common conjugate system given by the spherical coordinates on the complex sphere SnCn+1 and non-degenerate joined second fundamental forms. It is then proven that this family is maximal.

Key words: Peterson's deformation; higher dimensional quadric; common conjugate system.

pdf (242 kb)   ps (180 kb)   tex (16 kb)

References

  1. Berger E., Bryant R.L., Griffiths P.A., The Gauss equations and rigidity of isometric embeddings, Duke Math. J. 50 (1983), 803-892.
  2. Bianchi L., Lezioni di geometria differenziale, Vols. 1-4, Nicola Zanichelli Editore, Bologna, 1922, 1923, 1924, 1927.
  3. Calapso P., Intorno alle superficie applicabili sulle quadriche ed alle loro transformazioni, Annali di Mat. 19 (1912), no. 1, 61-82.
    Calapso P., Intorno alle superficie applicabili sulle quadriche ed alle loro transformazioni, Annali di Mat. 19 (1912), no. 1, 107-157.
  4. Cartan É., Sur les variétés de courboure constante d'un espace euclidien ou non-euclidien, Bull. Soc. Math. France 47 (1919), 125-160.
    Cartan É., Sur les variétés de courboure constante d'un espace euclidien ou non-euclidien, Bull. Soc. Math. France 48 (1920), 132-208.
  5. Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, Vols. 1-4, Gauthier-Villars, Paris, 1894-1917.
  6. Horn R.A., Johnson C.R., Matrix analysis, Cambridge University Press, Cambridge, 1985.
  7. Peterson K.-M., Sur la déformation des surfaces du second ordre, Ann. Fac. Sci. Toulouse Sér. 2 7 (1905), no. 1, 69-107.


Previous article   Next article   Contents of Volume 6 (2010)