|
SIGMA 6 (2010), 029, 16 pages arXiv:0910.5144
https://doi.org/10.3842/SIGMA.2010.029
Contribution to the Proceedings of the XVIIIth International Colloquium on Integrable Systems and Quantum Symmetries
Jordan-Schwinger Representations and Factorised Yang-Baxter Operators
David Karakhanyan a and Roland Kirschner b
a) Yerevan Physics Institute, Br. Alikhanian Str. 2, 375036 Yerevan, Armenia
b) Institut für Theoretische Physik, Universität Leipzig, PF 100 920, D-04009 Leipzig, Germany
Received October 28, 2009, in final form March 30, 2010; Published online April 07, 2010
Abstract
The construction elements of the factorised form of the
Yang-Baxter R operator acting on generic representations of
q-deformed sl(n+1) are studied. We rely on the
iterative construction of such representations by the restricted
class of Jordan-Schwinger representations.
The latter are formulated explicitly. On this basis
the parameter exchange and intertwining operators
are derived.
Key words:
Yang-Baxter equation; factorisation method.
pdf (272 kb)
ps (187 kb)
tex (21 kb)
References
- Biedenharn L.C., Lohe M.A.,
An extension of the Borel-Weil construction to the quantum group Uq(n),
Comm. Math. Phys. 146 (1992) 483-504.
Biedenharn L.C., Lohe M.A.,
Quantum group symmetry and q-tensor algebras,
World Scientific Publishing Co., Inc., River Edge, NJ, 1995.
- Gelfand I.M., Naimark M.A.,
Unitary representations of the classical groups,
Trudy Math. Inst. Steklov., Vol. 36, Izdat. Nauk SSSR, Moscow - Leningrad, 1950
(German transl.: Akademie Verlag, Berlin, 1957).
- Borel A., Weil A.,
Representations lineaires et espaces homogenes Kählerians des groupes de Lie compactes,
Sem. Bourbaki, May 1954 (expose J.-P. Serre).
- Derkachov S.E., Karakhanyan D.R., Kirschner R., Valinevich P.,
Iterative construction of Uq(sl(n+1)) representations and Lax matrix factorisation,
Lett. Math. Phys. 85 (2008), 221-234,
arXiv:0805.4724.
- Isaev A.P.,
Quantum groups and Yang-Baxter equations,
Sov. J. Part. Nucl. 26 (1995), 501-525 (see also the extended version:
Preprint, Bonn, 2004, MPI 2004-132).
- Khoroshkin S.M., Tolstoy V.N.,
Universal R-matrix for quantized (super)algebras,
Comm. Math. Phys. 141 (1991), 599-617.
- Date E., Jimbo M., Miki K., Miwa T.,
Generalized chiral Potts model and minimal cyclic representations of Uq(^gl(n,C)),
Comm. Math. Phys. 137 (1991), 133-147.
- Bazhanov V.V., Kashaev R.M., Mangazeev V.V., Stroganov Yu.G.,
(ZN×)n–1 generalization of the chiral Potts model,
Comm. Math. Phys. 138 (1991), 393-408.
- Delius G.W., Gould M.D., Zhang Y.Z.,
On the construction of trigonometric solutions of the Yang-Baxter equation,
Nuclear Phys. B 432 (1994), 377-403,
hep-th/9405030.
- Bazhanov V.V., Stroganov Yu.G.,
Chiral Potts model as a descendant of the six-vertex model,
J. Statist. Phys. 59 (1990), 799-817.
- Hasegawa K., Yamada Y.,
Algebraic derivation of the broken ZN symmetric model,
Phys. Lett. A 146 (1990), 387-396.
- Tarasov V.O.,
Cyclic monodromy matrices for the R-matrix of the six-vertex model and the chiral Potts model with fixed spin boundary conditions, in Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., Vol. 16, World Sci. Publ., River Edge, NJ, 1992, 963-975.
- Belavin A.A., Odesskii A.V., Usmanov R.A.,
New relations in the algebra of the Baxter Q-operators,
Theoret. and Math. Phys. 130 (2002), 323-350,
hep-th/0110126.
- Kashaev R.M., Mangazeev V.V., Nakanishi T.,
Yang-Baxter equation for the sl(n) chiral Potts model,
Nuclear Phys. B 362 (1991), 563-582.
- Tarasov V.,
Cyclic monodromy matrices for sl(n) trigonometric R-matrices,
Comm. Math. Phys. 158 (1993), 459-483,
hep-th/9211105.
- Lipatov L.N.,
High energy asymptotics of multi-color QCD and exactly solvable lattice models,
JETP Lett. 59 (1994), 596-599,
hep-th/9311037.
- Braun V.M., Derkachov S.E., Manashov A.N.,
Integrability of three-particle evolution equations in QCD,
Phys. Rev. Lett. 81 (1998), 2020-2023,
hep-ph/9805225.
- Karakhanyan D., Kirschner R., Mirumyan M.,
Universal R operator with deformed conformal symmetry,
Nuclear Phys. B 636 (2002), 529-548,
nlin.SI/0111032.
- Derkachov S.E.,
Factorization of R-matrix and Baxter's Q-operator,
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)
335 (2007), 144-166 (English transl.: J. Math. Sci. (N.Y.) 151 (2008), 2880-2893),
math.QA/0507252.
- Derkachov S., Karakhanyan D., Kirschner R.,
Baxter Q-operators of the XXZ chain and R-matrix factorization,
Nuclear Phys. B 738 (2006), 368-390,
hep-th/0511024.
- Derkachov S., Karakhanyan D., Kirschner R.,
Yang-Baxter R-operators and parameter permutations,
Nuclear Phys. B 785 (2007), 263-285,
hep-th/0703076.
- Derkachov S.E., Manashov A.N.,
R-matrix and Baxter Q-operators for the noncompact SL(N,C) invariant spin chain,
SIGMA 2 (2006), 084, 20 pages,
nlin.SI/0612003.
- Valinevich P.A., Derkachov S.E., Karakhanyan D., Kirschner R.,
Factorization of the R-matrix for the quantum algebra slq(3),
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)
335 (2007), 88-92 (English transl.: J. Math. Sci. (N.Y.) 151 (2008), 2848-2858).
- Jordan P.,
Der Zusammenhang der symmetrischen und linearen Gruppen und das Mehrkörperproblem,
Z. Phys. 94 (1935), 531-535.
- Schwinger J.,
Quantum mechanics of angular momentum. A collection of reprints and original papers,
Editors L.C. Biedenharn and H. van Dam,
Academic Press, New York - London 1965.
- Jimbo M.,
A q-difference analog of U(g) and the Yang-Baxter equation,
Lett. Math. Phys. 10 (1985) 63-69.
Jimbo M., A q-analogue of U(gl(N+1)), Hecke algebra, and the Yang-Baxter equation,
Lett. Math. Phys. 11 (1986), 247-252.
- Faddeev L.D., Kashaev R.M.,
Quantum dilogarithm,
Modern Phys. Lett. A 9 (1994), 427-434,
hep-th/9310070.
Kirillov A.N., Dilogarithm identities,
Progr. Theor. Phys. Suppl. (1995), no. 118, 61-142.
|
|