|
SIGMA 6 (2010), 068, 17 pages arXiv:1008.3440
https://doi.org/10.3842/SIGMA.2010.068
Contribution to the Special Issue “Noncommutative Spaces and Fields”
Twist Quantization of String and Hopf Algebraic Symmetry
Tsuguhiko Asakawa and Satoshi Watamura
Department of Physics, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
Received April 07, 2010, in final form August 12, 2010; Published online August 20, 2010
Abstract
We describe the twist quantization of string worldsheet theory,
which unifies the description of quantization and the target space symmetry,
based on the twisting of Hopf and module algebras.
We formulate a method of decomposing a twist into successive twists
to analyze the twisted Hopf and module algebra structure,
and apply it to several examples, including finite twisted diffeomorphism
and extra treatment for zero modes.
Key words:
string theory; qunatization; Hopf algebra; Drinfeld twist.
pdf (315 kb)
ps (196 kb)
tex (23 kb)
References
- Asakawa T., Mori M., Watamura S.,
Hopf algebra symmetry and string theory,
Progr. Theoret. Phys. 120 (2008), 659-689,
arXiv:0805.2203.
- Asakawa T., Mori M., Watamura S.,
Twist quantization of string and B field background,
J. High Energy Phys. 2009 (2009), no. 4, 117, 25 pages,
arXiv:0811.1638.
- Drinfeld V.G.,
Quasi-Hopf algebras,
Leningrad Math. J. 1 (1990), 1419-1457.
- Chaichian M., Kulish P.P., Nishijima K., Tureanu A.,
On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT,
Phys. Lett. B 604 (2004), 98-102,
hep-th/0408069.
- Koch F., Tsouchnika E.,
Construction of θ-Poincaré algebras and their invariants on Mθ,
Nuclear Phys. B 717 (2005), 387-403,
hep-th/0409012.
- Aschieri P., Blohmann C., Dimitrijevic M., Meyer F., Schupp P., Wess J.,
A gravity theory on noncommutative spaces,
Classical Quantum Gravity 22 (2005), 3511-3532,
hep-th/0504183.
- Watamura S.,
Noncommutative geometry in string and twisted Hopf algebra of diffeomorphism,
Gen. Relativity Gravitation, to appear.
- Aschieri P., Lizzi F., Vitale P.,
Twisting all the way: from classical mechanics to quantum fields,
Phys. Rev. D 77 (2008), 025037, 16 pages,
arXiv:0708.3002.
- Majid S.,
Foundations of quantum group theory,
Cambridge University Press, Cambridge, 1995.
- Polchinski J.,
String theory,
Cambridge University Press, Cambridge, 1998.
- Álvarez-Gaumé L., Meyer F., Vázquez-Mozo M.A.,
Comments on noncommutative gravity,
Nuclear Phys. B 753 (2006), 92-117,
hep-th/0605113.
- Fradkin E.S., Tseytlin A.A.,
Nonlinear electrodynamics from quantized strings,
Phys. Lett. B 163 (1985), 123-130.
- Callan C.G., Lovelace C., Nappi C.R., Yost S.A.,
String loop corrections to beta functions,
Nuclear Phys. B 288 (1987), 525-550.
- Abouelsaood A., Callan C.G., Nappi C.R., Yost S.A.,
Open strings in background gauge fields,
Nuclear Phys. B 280 (1987), 599-624.
- Braga N.R.F., Carrion H.L., Godinho C.F.L.,
Normal ordering and boundary conditions in open bosonic strings,
J. Math. Phys. 46 (2005), 062302, 5 pages,
hep-th/0412075.
- Braga N.R.F., Carrion H.L., Godinho C.F.L.,
Normal ordering and boundary conditions for fermionic string coordinates,
Phys. Lett. B 638 (2006), 272-274,
hep-th/0602212.
- Chakraborty B., Gangopadhyay S., Hazra A.G.,
Normal ordering and noncommutativity in open bosonic strings,
Phys. Rev. D 74 (2006), 105011, 6 pages,
hep-th/0608065.
- Gangopadhyay S., Hazra A.G.,
Normal ordering and non(anti)commutativity in open super strings,
Phys. Rev. D 75 (2007), 065026, 6 pages,
hep-th/0703091.
- Seiberg N., Witten E.,
String theory and noncommutative geometry,
J. High Energy Phys. 1999 (1999), no. 9, 032, 93 pages,
hep-th/9908142.
- Oeckl R.,
Untwisting noncommutative Rd and the equivalence of quantum field theories,
Nuclear Phys. B 581 (2000), 559-574,
hep-th/0003018.
- Watts P.,
Derivatives and the role of the Drinfeld twist in noncommutative string theory,
hep-th/0003234.
|
|