|
SIGMA 6 (2010), 071, 42 pages arXiv:1009.1192
https://doi.org/10.3842/SIGMA.2010.071
Contribution to the Special Issue “Noncommutative Spaces and Fields”
Hopf Maps, Lowest Landau Level, and Fuzzy Spheres
Kazuki Hasebe
Kagawa National College of Technology, Mitoyo, Kagawa 769-1192, Japan
Received May 05, 2010, in final form August 19, 2010; Published online September 07, 2010;
Note and references are added September 22, 2010
Abstract
This paper is a review of monopoles, lowest Landau level, fuzzy spheres, and their mutual relations.
The Hopf maps of division algebras provide
a prototype relation between monopoles and fuzzy spheres.
Generalization of complex numbers to Clifford algebra is exactly analogous to
generalization of fuzzy two-spheres to higher dimensional fuzzy spheres.
Higher dimensional fuzzy spheres have an interesting hierarchical structure made of ''compounds'' of lower dimensional spheres.
We give a physical interpretation for such particular structure of fuzzy spheres by utilizing Landau models in generic even dimensions.
With Grassmann algebra, we also introduce a graded version of the Hopf map, and discuss its relation to fuzzy supersphere in context of supersymmetric Landau model.
Key words:
division algebra; Clifford algebra; Grassmann algebra; Hopf map; non-Abelian monopole; Landau model; fuzzy geometry.
pdf (515 kb)
ps (271 kb)
tex (44 kb)
[previous version:
pdf (512 kb)
ps (270 kb)
tex (44 kb)]
References
- Madore J.,
The fuzzy sphere,
Classical Quantum Gravity 9 (1992), 69-87.
- Grosse H., Klimcík C., Presnajder P.,
On finite 4D quantum field theory in non-commutative geometry,
Comm. Math. Phys. 180 (1996), 429-438,
hep-th/9602115.
- Grosse H., Klimcík C., Presnajder P.,
Field theory on a supersymmetric lattice,
Comm. Math. Phys. 185 (1997), 155-175,
hep-th/9507074.
- Grosse H., Reiter G.,
The fuzzy supersphere,
J. Geom. Phys. 28 (1998), 349-383,
math-ph/9804013.
- Seiberg N., Witten E.,
String theory and noncommutative geometry,
J. High Energy Phys. 1999 (1999), no. 9, 032, 93 pages,
hep-th/9908142.
- de Boer J., Grassi P.A., van Nieuwenhuizen P.,
Non-commutative superspace from string theory,
Phys. Lett. B 574 (2003), 98-104,
hep-th/0302078.
- Berkovits N., Seiberg N.,
Superstrings in graviphoton background and N=1/2+3/2 supersymmetry,
J. High Energy Phys. 2003 (2003), no. 7, 010, 10 pages,
hep-th/0306226.
- Myers R.C.,
Dielectric-branes,
J. High Energy Phys. 1999 (1999), no. 12, 022, 41 pages,
hep-th/9910053.
- Castelino J., Lee S., Taylor W.,
Longitudinal 5-branes as 4-spheres in matrix theory,
Nuclear Phys. B 526 (1998), 334-350,
hep-th/9712105.
- Iso S., Umetsu H.,
Gauge theory on noncommutative supersphere from supermatrix model,
Phys. Rev. D 69 (2004), 1050033, 7 pages,
hep-th/0311005.
- Constable N.R., Myers R.C., Tafjord O.,
Noncommutative bion core,
Phys. Rev. D 61 (2000), 106009, 14 pages,
hep-th/9911136.
Constable N.R., Myers R.C., Tafjord O.,
Non-Abelian brane intersections,
J. High Energy Phys. 2001 (2001), no. 6, 023, 37 pages,
hep-th/0102080.
- Cook P.L.H., de Mello Koch R., Murugan J.,
Non-Abelian BIonic brane intersections,
Phys. Rev. D 68 (2003), 126007, 8 pages,
hep-th/0306250.
- Bhattacharyya R., de Mello Koch R.,
Fluctuating fuzzy funnels,
J. High Energy Phys. 2005 (2005), no. 10, 036, 20 pages,
hep-th/0508131.
- Ho P.-M., Ramgoolam S.,
Higher-dimensional geometries from matrix brane constructions,
Nuclear Phys. B 627 (2002), 266-288,
hep-th/0111278.
- Kimura Y.,
Noncommutative gauge theory on fuzzy four-sphere and matrix model,
Nuclear Phys. B 637 (2002), 177-198,
hep-th/0204256.
Kimura Y.,
On higher-dimensional fuzzy spherical branes,
Nuclear Phys. B 664 (2003), 512-530,
hep-th/0301055.
- Ramgoolam S.,
Higher dimensional geometries related to fuzzy odd-dimensional spheres,
J. High Energy Phys. 2002 (2002), no. 10, 064, 29 pages,
hep-th/0207111.
- Nair V.P., Randjbar-Daemi S.,
Quantum Hall effect on S3, edge states and fuzzy S3/Z2,
Nuclear Phys. B 679 (2004), 447-463,
hep-th/0309212.
- Taylor W.,
Lectures on D-branes, gauge theory and M(atrices),
hep-th/9801182.
- Balachandran A.P.,
Quantum spacetimes in the year 1,
Pramana J. Phys. 59 (2002), 359-368,
hep-th/0203259.
- Karabali D., Nair V.P., Randjbar-Daemi S.,
Fuzzy spaces, the M(atrix) model and the quantum Hall effect,
hep-th/0407007.
- Azuma T.,
Matrix models and the gravitational interaction,
PhD thesis, Kyoto University, 2004,
hep-th/0401120.
- Balachandran A.P., Kurkcuoglu S., Vaidya S.,
Lectures on fuzzy and fuzzy SUSY physics,
hep-th/0511114.
- Abe Y.,
Construction of fuzzy spaces and their applications to matrix models,
PhD Thesis, The City University of New York, 2005,
arXiv:1002.4937.
- Karabali D., Nair V.P.,
Quantum Hall effect in higher dimensions, matrix models and fuzzy geometry,
J. Phys. A: Math. Gen. 39 (2006), 12735-12763,
hep-th/0606161.
- Hatsuda M., Iso S., Umetsu H.,
Noncommutative superspace, supermatrix and lowest Landau level,
Nuclear Phys. B 671, (2003), 217-242,
hep-th/0306251.
- Hamilton W.R.,
On a new species of imaginary quantities connected with a theory of quaternions,
Proc. R. Ir. Acad. 2 (1844), 424-434.
- Baez J.C.,
The octonions,
Bull. Amer. Math. Soc. (N.S.) 39 (2002), 145-205,
Errata,
Bull. Amer. Math. Soc. (N.S.) 42 (2005), 213-213,
math.RA/0105155.
- Hopf H.,
Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche,
Math. Ann. 104 (1931), 637-665.
- Hopf H.,
Über die Abbildungen von Sphären auf Sphären niedrigerer Dimension,
Fund. Math. 25 (1935), 427-440.
- Clifford W.K.,
Applications of Grassmann's extensive algebra,
Amer. J. Math. 1 (1878), 350-358.
- Grassmann H.,
Die Lineale Ausdehnungslehre - Ein neuer Zweig der Mathematik II,
1844.
- Landi G., Marmo G.,
Extensions of Lie superalgebras and supersymmetric Abelian gauge fields,
Phys. Lett. B 193 (1987), 61-66.
- Dirac P.,
Quantised singularities in the electromagnetic field,
Proc. R. Soc. Lond. Ser. A 133 (1931), 60-72.
- Yang C.N.,
Generalization of Dirac's monopole to SU2 gauge fields,
J. Math. Phys. 19 (1978), 320-328.
- Grossman B., Kephart T.W., Stasheff J.D.,
Solutions to Yang-Mills field equations in eight-dimensions and the last Hopf map,
Comm. Math. Phys. 96 (1984), 431-437,
Erratum,
Comm. Math. Phys. 100 (1985), 311-311.
- Nakahara M.,
Geometry, topology and physics, 2nd ed., Graduate Student Series in Physics, Institute of Physics, Bristol, 2003.
- Haldane F.D.M.,
Fractional quantization of the Hall effects: a hierarchy of incompressible quantum fluid states,
Phys. Rev. Lett. 51 (1983), 605-608.
- Wu T.T., Yang C.N.,
Dirac monopole without strings: monopole harmonics,
Nuclear Physics B 107 (1976), 365-380.
- Hasebe K., Kimura Y.,
Fuzzy supersphere and supermonopole,
Nuclear Phys. B 709 (2005), 94-114,
hep-th/0409230.
- Bartocci C., Bruzzo U., Landi G.,
Chern-Simons forms on principal superfiber bundles,
J. Math. Phys. 31 (1990), 45-54.
- Landi G.,
Projective modules of finite type over the supersphere S2,2,
Differential Geom. Appl. 14 (2001), 95-111,
math-ph/9907020.
- Pais A., Rittenberg V.,
Semisimple graded Lie algebras,
J. Math. Phys. 16 (1975), 2062-2073,
Erratum,
J. Math. Phys. 17 (1976), 598-598.
- Scheunert M., Nahm W., Rittenberg V.,
Irreducible representations of the osp(2,1) and spl(2,1) graded Lie algebra,
J. Math. Phys. 18 (1977), 155-162.
- Marcu M.,
The representations of spl(2,1) - an example of representations of basic superalgebras,
J. Math. Phys. 21 (1980), 1277-1283.
- Frappat L., Sciarrino A., Sorba P.,
Dictionary on Lie algebras and superalgebras, Academic Press, Inc., San Diego, CA, 2000.
- Balachandran A.P., Kürkçüoglu S., Rojas E.,
The star product on the fuzzy supersphere,
J. High Energy Phys. 2002 (2002), no. 7, 056, 22 pages,
hep-th/0204170.
- Zhang S.-C., Hu J.-P.,
A four-dimensional generalization of the quantum Hall effect,
Science 294 (2001), no. 5543, 823-828,
cond-mat/0110572.
- 't Hooft G.,
Computation of the quantum effects due to a four-dimensional pseudoparticle,
Phys. Rev. D 14 (1976), 3432-3450.
- Iachello F.,
Lie algebras and applications,
Lecture Notes in Physics, Vol. 708, Springer-Verlag, Berlin, 2006.
- Yang C.N.,
SU2 monopole harmonics,
J. Math. Phys. 19 (1978), 2622-2627.
- Bernevig B.A., Chern C.-H., Hu J.-P., Toumbas N., Zhang S.C.,
Effective field theory description of the higher-dimensional quantum Hall liquid,
Ann. Physics 300 (2002), 185-207,
cond-mat/0206164.
- Ramgoolam S.,
On spherical harmonics for fuzzy spheres in diverse dimensions,
Nuclear Phys. B 610 (2001), 461-488,
hep-th/0105006.
- Azuma T., Bagnoud M.,
Curved-space classical solutions of a massive supermatrix model,
Nuclear Phys. B 651 (2003), 71-86,
hep-th/0209057.
- Abe Y.,
Construction of fuzzy S4,
Phys. Rev. D 70 (2004), 126004, 10 pages,
hep-th/0406135.
Abe Y.,
Emergence of longitudinal 7-branes and fuzzy S4 in compactification scenarios of M(atrix) theory,
hep-th/0512174.
- Bernevig B.A., Hu J.-P., Toumbas N., Zhang S.-C.,
Eight-dimensional quantum Hall effect and "octonions",
Phys. Rev. Lett. 91 (2003), 236803, 4 pages,
cond-mat/0306045.
- Hasebe K., Kimura Y.,
Dimensional hierarchy in quantum Hall effects on fuzzy spheres,
Phys. Lett. B 602 (2004), 255-260,
hep-th/0310274.
- Fabinger M.,
Higher-dimensional quantum Hall effect in string theory,
J. High Energy Phys. 2002 (2002), no. 5, 037, 12 pages,
hep-th/0201016.
- Meng G.,
Geometric construction of the quantum Hall effect in all even dimensions,
J. Phys. A: Math. Gen. 36 (2003), 9415-9423,
cond-mat/0306351.
- Horváth Z., Palla L.,
Spontaneous compactification and "monopoles" in higher dimensions,
Nuclear Phys. B 142 (1978), 327-343.
- Tchrakian D.H.,
N-dimensional instantons and monopoles,
J. Math. Phys. 21 (1980), 166-169.
- Saclioglu C.,
Scale invariant gauge theories and self-duality in higher dimensions,
Nuclear Phys. B 277 (1986), 487-508.
- Kimura Y.,
Nonabelian gauge field and dual description of fuzzy sphere,
J. High Energy Phys. 2004 (2004), no. 4, 058, 29 pages
hep-th/0402044.
- Hasebe K.,
Split-quaternionic Hopf map, quantum Hall effect, and twistor theory,
Phys. Rev. D 81 (2010), 041702, 5 pages,
arXiv:0902.2523.
- Ivanov E., Mezincescu L., Townsend P.K.,
A super-flag Landau model,
hep-th/0404108.
- Hasebe K.,
Quantum Hall liquid on a noncommutative superplane,
Phys. Rev. D 72 (2005), 105017, 9 pages,
hep-th/0503162.
- Ivanov E., Mezincescu L., Townsend P.K.,
Planar super-Landau models,
J. High Energy Phys. 2006 (2006), no. 1, 143, 23 pages,
hep-th/0510019.
- Curtright T., Ivanov E., Mezincescu L., Townsend P.K.
Planar super-Landau models revisited,
J. High Energy Phys. 2007 (2007), no. 4, 020, 25 pages,
hep-th/0612300.
- Beylin A., Curtright T., Ivanov E., Mezincescu L., Townsend P.K.,
Unitary spherical super-Landau models,
J. High Energy Phys. 2008 (2008), no. 10, 069, 46 pages,
arXiv:0806.4716.
- Beylin A., Curtright T., Ivanov E., Mezincescu L.,
Generalized N=2 super Landau models,
arXiv:1003.0218.
- Ivanov E., Mezincescu L., Townsend P.K.,
Fuzzy CP(n|m) as a quantum superspace,
hep-th/0311159.
- Murray S., Sämann C.,
Quantization of flag manifolds and their supersymmetric extensions,
Adv. Theor. Math. Phys. 12 (2008), 641-710,
hep-th/0611328.
- Landi G., Pagani C., Reina C.,
A Hopf bundle over a quantum four-sphere from the symplectic group,
Comm. Math. Phys. 263 (2006), 65-88,
math.QA/0407342.
- Hasebe K.,
The split-algebras and non-compact Hopf maps,
J. Math. Phys. 51 (2010), 053524, 35 pages,
arXiv:0905.2792.
- Faria Carvalho L., Kuznetsova Z., Toppan F.,
Supersymmetric extension of Hopf maps: N=4 σ-models and the S3 → S2 fibration,
Nuclear Phys. B 834 (2010), 237-257,
arXiv:0912.3279.
- Mkrtchyan R., Nersessian A., Yeghikyan V.,
Hopf maps and Wigner's little groups,
arXiv:1008.2589.
- Bellucci S., Nersessian A., Yeranyan A.,
Hamiltonian reduction and supersymmetric mechanics with Dirac monopole,
Phys. Rev. D 74 (2006), 065022, 7 pages,
hep-th/0606152.
- Gonzales M., Kuznetsova Z., Nersessian A., Toppan F., Yeghikyan V.,
Second Hopf map and supersymmetric mechanics with Yang monopole,
Phys. Rev. D 80 (2009), 025022, 13 pages,
arXiv:0902.2682.
- Bellucci S., Toppan F., Yeghikyan V.,
Second Hopf map and Yang-Coulomb system on 5D (pseudo)sphere,
J. Phys. A: Math. Theor. 43 (2010), 045205, 12 pages,
arXiv:0905.3461.
- Fedoruk S., Ivanov E., Lechtenfeld O.,
OSp(4|2) superconformal mechanics,
J. High Energy Phys. 2009 (2009), no. 8, 081, 24 pages,
arXiv:0905.4951.
- Bellucci S., Krivonos S., Sutulin A.,
Three dimensional N=4 supersymmetric mechanics with Wu-Yang monopole,
arXiv:0911.3257.
- Ivanov E.A., Konyushikhin M.A., Smilga A.V.,
SQM with non-Abelian self-dual fields: harmonic superspace description,
J. High Energy Phys. 2010 (2010), no. 5, 033, 14 pages,
arXiv:0912.3289.
- Ivanov E., Konyushikhin M.,
N=4, 3D supersymmetric quantum mechanics in non-Abelian monopole background,
arXiv:1004.4597.
- Krivonos S., Lechtenfeld O., Sutulin A.,
N=4 supersymmetry and the Belavin-Polyakov-Shvarts-Tyupkin instanton,
Phys. Rev. D 81 (2010), 085021, 7 pages,
arXiv:1001.2659.
- Ishii T., Ishiki G., Shimasaki S., Tsuchiya A.,
T-duality, fiber bundles and matrices,
J. High Energy Phys. 2007 (2007), no. 5, 014, 20 pages,
hep-th/0703021.
Ishii T., Ishiki G., Shimasaki S., Tsuchiya A.,
Fiber bundles and matrix models,
Phys. Rev. D 77 (2008), 126015, 25 pages,
arXiv:0802.2782.
- Pedder C., Sonner J., Tong D.,
The geometric phase and gravitational precession of D-branes,
Phys. Rev. D 76 (2007), 126014, 10 pages,
arXiv:0709.2136.
Pedder C., Sonner J., Tong D.,
The Berry phase of D0-branes,
J. High Energy Phys. 2008 (2008), no. 3, 065, 14 pages,
arXiv:0801.1813.
- Nastase H., Papageorgakis C., Ramgoolam S.,
The fuzzy S2 structure of M2-M5 systems in ABJM membrane theories,
J. High Energy Phys. 2009 (2009), no. 5, 123, 61 pages,
arXiv:0903.3966.
- Nastase H., Papageorgakis C.,
Fuzzy Killing spinors and supersymmetric D4 action on the fuzzy 2-sphere from the ABJM model,
J. High Energy Phys. 2009 (2009), no. 12, 049, 52 pages,
arXiv:0908.3263.
- Arovas D.P., Auerbach A., Haldane F.D.M.,
Extended Heisenberg models of antiferromagnetism: analogies to the fractional quantum Hall effect,
Phys. Rev. Lett. 60 (1988), 531-534.
- Arovas D.P., Hasebe K., Qi X.-L., Zhang S.-C.,
Supersymmetric valence bond solid states,
Phys. Rev. B 79 (2009), 224404, 20 pages,
arXiv:0901.1498.
- Hasebe K.,
Supersymmetric quantum Hall effect on a fuzzy supersphere,
Phys. Rev. Lett. 94 (2005), 206802, 4 pages,
hep-th/0411137.
- Landi G.,
Spin-Hall effect with quantum group symmetry,
Lett. Math. Phys. 75 (2006), 187-200,
hep-th/0504092.
- Jellal A.,
Quantum Hall effect on higher-dimensional spaces,
Nuclear Phys. B 725 (2005), 554-576,
hep-th/0505095.
- Hasebe K.,
Hyperbolic supersymmetric quantum Hall effect,
Phys. Rev. D 78 (2008), 125024, 13 pages,
arXiv:0809.4885.
- Tu H.-H., Zhang G.-M., Xiang T., Liu Z.-X., Ng T.-K.,
Topologically distinct classes of valence bond solid states with their parent Hamiltonians,
Phys. Rev. B 80 (2009), 014401, 11 pages,
arXiv:0904.0550.
- Asorey M., Esteve J.G., Pacheco A.F.,
Planar rotor: the θ-vacuum structure, and some approximate methods in quantum mechanics,
Phys. Rev. D 27 (1983), 1852-1868.
- Karabali D., Nair V.P.,
Quantum Hall effect in higher dimensions,
Nuclear Phys. B 641 (2002), 533-546,
hep-th/0203264.
- Perelomov A.M.,
Coherent states for arbitrary Lie group,
Comm. Math. Phys. 26 (1972), 222-236,
math-ph/0203002.
- Alexanian G., Balachandran A.P., Immirzi G., Ydri B.,
Fuzzy CP2,
J. Geom. Phys. 42 (2002), 28-53,
hep-th/0103023.
- Balachandran A.P., Dolan B.P., Lee J., Martin X., O'Connor D.,
Fuzzy complex projective spaces and their star-products,
J. Geom. Phys. 43 (2002), 184-204,
hep-th/0107099.
- Carow-Watamura U., Steinacker H., Watamura S.,
Monopole bundles over fuzzy complex projective spaces,
J. Geom. Phys. 54 (2005), 373-399,
hep-th/0404130.
- Sheikh-Jabbari M.M.,
Tiny graviton matrix theory: DLCQ of IIB plane-wave string theory, a conjecture,
J. High Energy Phys. 2004 (2004), no. 9, 017, 29 pages,
hep-th/0406214.
- Sheikh-Jabbari M.M., Torabian M.,
Classification of all 1/2 BPS solutions of the tiny graviton matrix theory,
J. High Energy Phys. 2005 (2005), no. 4, 001, 36 pages,
hep-th/0501001.
|
|