Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 7 (2011), 012, 22 pages      arXiv:1011.0660      https://doi.org/10.3842/SIGMA.2011.012
Contribution to the Proceedings of the International Workshop “Recent Advances in Quantum Integrable Systems”

Spin Chains with Non-Diagonal Boundaries and Trigonometric SOS Model with Reflecting End

Ghali Filali a and Nikolai Kitanine b
a) Université de Cergy-Pontoise, LPTM UMR 8089 du CNRS, 2 av. Adolphe Chauvin, 95302 Cergy-Pontoise, France
b) Université de Bourgogne, Institut de Mathématiques de Bourgogne UMR 5584 du CNRS, 9 av. Alain Savary - B.P. 47 870, 21078 Dijon, France

Received October 28, 2010, in final form January 11, 2011; Published online January 27, 2011

Abstract
In this paper we consider two a priori very different problems: construction of the eigenstates of the spin chains with non parallel boundary magnetic fields and computation of the partition function for the trigonometric solid-on-solid (SOS) model with one reflecting end and domain wall boundary conditions. We show that these two problems are related through a gauge transformation (so-called vertex-face transformation) and can be solved using the same dynamical reflection algebras.

Key words: algebraic Bethe ansatz; spin chains; dynamical reflection algebra; SOS models.

pdf (419 kb)   tex (64 kb)

References

  1. Albert T.-D., Boos H., Flume R., Poghossian R.H., Ruhlig K., An F-twisted XYZ model, Lett. Math. Phys. 53 (2000), 201-214, nlin.SI/0005023.
  2. Baxter R., Eight-vertex model in lattice statistic and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized Ice-type lattice model, Ann. Physics 76 (1973), 25-47.
  3. Cao J., Lin H.-Q., Shi K.-J., Wang Y., Exact solution of XXZ spin chain with unparallel boundary fields, Nuclear Phys. B 663 (2003), 487-519, cond-mat/0212163.
  4. Cherednik I.V., Factorizing particles on a half-line and root systems, Theoret. and Math. Phys. 61 (1984), 977-983.
  5. de Gier J., Essler F.H.L., Bethe ansatz solution of the asymmetric exclusion process with open boundaries, Phys. Rev. Lett. 95 (2005), 240601, 4 pages, cond-mat/0508707.
  6. de Gier J., Essler F.H.L., Exact spectral gaps of the asymmetric exclusion process with open boundaries, J. Stat. Mech. Theory Exp. 2006 (2006), no. 12, P12011, 45 pages, cond-mat/0609645.
  7. Faddeev L.D., Sklyanin E.K., Takhtajan L.A., Quantum inverse problem method. I, Theoret. and Math. Phys. 40 (1979), 688-706.
  8. Felder G., Conformal field theory and integrable systems associated to elliptic curves, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 1247-1255, hep-th/9407154.
  9. Felder G., Varchenko A., Algebraic Bethe ansatz for the elliptic quantum group Eτ,η(sl2), Nuclear Phys. B 480 (1996), 485-503, q-alg/9605024.
  10. Felder G., Varchenko A., On representations of the elliptic quantum group Eτ,η(sl2), Comm. Math. Phys. 181 (1996), 741-761, q-alg/9601003.
  11. Filali G., Kitanine N., The partition function of the trigonometric sos model with a reflecting end, J. Stat. Mech. Theory Exp. 2010 (2010), no. 6, L06001, 11 pages, arXiv:1004.1015.
  12. Gervais J.-L., Neveu A., Novel triangle relation and absence of tachyons in Liouville string field theory, Nuclear Phys. B 238 (1984), 125-141.
  13. Ghoshal S., Zamolodchikov A., Boundary S matrix and boundary state in two-dimensional integrable quantum field theory, Internat. J. Modern Phys. A 9 (1994), 3841-3885, hep-th/9306002.
  14. Izergin A.G., Partition function of the six-vertex model in a finite volume, Sov. Phys. Dokl. 32 (1987), 878-879.
  15. Izergin A.G., Korepin V.E., The quantum inverse scattering method approach to correlation functions, Comm. Math. Phys. 94 (1984), 67-92.
  16. Kitanine N., Kozlowski K.K., Maillet J.M., Niccoli G., Slavnov N.A., Terras V., Correlation functions of the open XXZ chain. I, J. Stat. Mech. Theory Exp. 2007 (2007), no. 10, P10009, 37 pages, arXiv:0707.1995.
  17. Kitanine N., Kozlowski K.K., Maillet J.M., Niccoli G., Slavnov N.A, Terras V., On correlation functions of the open XXZ chain. II, J. Stat. Mech. Theory Exp. 2008 (2008), no. 7, P07010, 33 pages, arXiv:0803.3305.
  18. Kitanine N., Maillet J.M., Terras V., Form factors of the XXZ Heisenberg spin-1/2 finite chain, Nuclear Phys. B 554 (1999), 647-678, math-ph/9807020.
  19. Kitanine N., Maillet J.M., Terras V., Correlation functions of the XXZ Heisenberg spin-1/2 chain in a magnetic field, Nuclear Phys. B 567 (2000), 554-582, math-ph/9907019.
  20. Korepin V.E., Calculation of norms of Bethe wave functions, Comm. Math. Phys. 86 (1982), 391-418.
  21. Nepomechie R.I., Bethe ansatz solution of the open XXZ chain with nondiagonal boundary terms, J. Phys. A: Math. Gen. 37 (2004), 433-440, hep-th/0304092.
  22. Nepomechie R.I., Ravanini F., Completeness of the Bethe ansatz solution of the open XXZ chain with nondiagonal boundary terms, J. Phys. A: Math. Gen. 36 (2003), 11391-11401, hep-th/0307095.
  23. Pakuliak S., Rubtsov V., Silantyev A., The SOS model partition function and the elliptic weight functions, J. Phys. A: Math. Theor. 41 (2008), 295204, 20 pages, arXiv:0802.0195.
  24. Rosengren H., An Izergin-Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices, Adv. in Appl. Math. 43 (2009), 137-155, arXiv:0801.1229.
  25. Sklyanin E., Boundary conditions for integrable quantum systems, J. Phys. A: Math. Gen. 21 (1988), 2375-2389.
  26. Takhtajan L.A., Faddeev L.D., The quantum method of the inverse problem and the heisenberg XYZ model, Russ. Math. Surveys 34 (1979), no. 5, 11-68.
  27. Tsuchiya O., Determinant formula for the six-vertex model with reflecting end, J. Math. Phys. 39 (1998), 5946-5951, solv-int/9804010.
  28. Wang Y.-S., The scalar products and the norm of Bethe eigenstates for the boundary XXX Heisenberg spin-1/2 finite chain, Nuclear Phys. B 622 (2002), 633-649.
  29. Yang W.-L., Chen X., Feng J., Hao K., Hou B.-Y., Shi K.-J., Zhang Y.-Z., Determinant representations of scalar products for the open XXZ chain with non-diagonal boundary terms, J. High Energy Phys. 2011 (2011), no. 1, 006, 26 pages, arXiv:1011.4719.
  30. Yang W.-L., Zhang Y.-Z., On the second reference state and complete eigenstates of the open XXZ chain, J. High Energy Phys. 2007 (2007), no. 4, 044, 11 pages, hep-th/0703222.
  31. Yang W.-L., Zhang Y.-Z., Drinfeld twists of the open XXZ chain with non-diagonal boundary terms, Nuclear Phys. B 831 (2010), 408-428, arXiv:1011.4120.


Previous article   Next article   Contents of Volume 7 (2011)