|
SIGMA 7 (2011), 027, 16 pages arXiv:1103.3929
https://doi.org/10.3842/SIGMA.2011.027
Contribution to the Proceedings of the Conference “Integrable Systems and Geometry”
Two Point Correlation Functions for a Periodic Box-Ball System
Jun Mada a and Tetsuji Tokihiro b
a) College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba 275-8576, Japan
b) Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8914, Japan
Received December 13, 2010, in final form March 02, 2011; Published online March 21, 2011
Abstract
We investigate correlation functions in a periodic box-ball system.
For the second and the third nearest neighbor correlation functions,
we give explicit formulae obtained by combinatorial methods.
A recursion formula for a specific N-point functions is also presented.
Key words:
correlation function; box-ball system.
pdf (417 kb)
tex (120 kb)
References
- Takahashi D., Satsuma J.,
A soliton cellular automaton,
J. Phys. Soc. Japan 59 (1990), 3514-3519.
- Yura F., Tokihiro T.,
On a periodic soliton cellular automaton,
J. Phys. A: Math. Gen. 35 (2002), 3787-3801,
nlin.SI/0112041.
- Fukuda K., Okado M., Yamada Y., Energy functions in box ball systems,
Internat. J. Modern Phys. A 15 (2000), 1379-1392,
math.QA/9908116.
- Hatayama G., Hikami K., Inoue R., Kuniba A., Takagi T., Tokihiro T.,
The AM(1) automata related to crystals of symmetric tensors,
J. Math. Phys. 42 (2001), 274-308,
math.QA/9912209.
- Mada J., Tokihiro T., Correlation functions for a periodic box-ball system,
J. Phys. A: Math. Theor. 43 (2010), 135205, 15 pages,
arXiv:0911.3953.
- Jimbo M., Miwa T.,
Quantum KZ equation with |q|=1 and correlation functions of the XXZ model in the gapless regime,
J. Phys. A: Math. Gen. 29 (1996), 2923-2958.
- Mada J., Idzumi M., Tokihiro T.,
The exact correspondence between conserved quantities of a periodic box-ball system and string solutions of the Bethe ansatz equations,
J. Math. Phys. 47 (2006), 053507, 18 pages.
- Torii M., Takahashi D., Satsuma J.,
Combinatorial representation of invariants of a soliton cellular automaton,
Phys. D 92 (1990), 209-220.
|
|