|
SIGMA 7 (2011), 029, 14 pages arXiv:1012.0808
https://doi.org/10.3842/SIGMA.2011.029
Contribution to the Proceedings of the Workshop “Supersymmetric Quantum Mechanics and Spectral Design”
Supersymmetry Transformations for Delta Potentials
David J. Fernández C. a, Manuel Gadella b and Luis Miguel Nieto b
a) Departamento de Física, Cinvestav, AP 14-740, 07000 México DF, Mexico
b) Departamento de Física Teórica, Atómica y Optica, Facultad de Ciencias, 47041 Valladolid, Spain
Received November 30, 2010, in final form March 19, 2011; Published online March 22, 2011
Abstract
We make a detailed study of the first and second-order
SUSY partners of a one-dimensional free Hamiltonian with a singular
perturbation proportional to a Dirac delta function. It is shown
that the second-order transformations increase the spectral
manipulation possibilities offered by the standard first-order
supersymmetric quantum mechanics.
Key words:
first and second-order SUSY; singular potentials.
pdf (395 kb)
tex (193 kb)
References
- Seba P.,
Some remarks on the δ'-interaction in one dimension,
Rep. Math. Phys. 24 (1986), 111-120.
- Kurasov P.,
Distribution theory for discontinuous test functions and differential operators with generalized coefficients,
J. Math. Anal. Appl. 201 (1996), 297-323.
- Coutinho F.A.B., Nogami Y., Fernando Perez J.,
Generalized point interactions in one-dimensional quantum mechanics,
J. Phys. A: Math. Gen. 30 (1997), 3937-3945.
- Toyama F.M., Nogami Y.,
Transmission-reflection problem with a potential of the form of the derivative of the delta function,
J. Phys. A: Math. Theor. 40 (2007), F685-F690.
- Fülöp T., Tsutsui I.,
A free particle on a circle with point interaction,
Phys. Lett. A 264 (2000), 366-374,
quant-ph/9910062.
- Hejcik P., Cheon T.,
Irregular dynamics in a solvable one-dimensional quantum graph,
Phys. Lett. A 356 (2006), 290-293,
quant-ph/0512239.
- Christiansen P.L., Arnbak H.C., Zolotaryuk A.V., Ermakov V.N., Gaididei Y.B.,
On the existence of resonances in the transmission probability for interactions arising from derivatives of Dirac's delta function,
J. Phys. A: Math. Gen. 36 (2003), 7589-7600.
- Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H.,
Solvable models in quantum mechanics,
Texts and Monographs in Physics, Springer-Verlag, New York, 1988.
- Albeverio S., Kurasov P.,
Singular perturbations of differential operators. Solvable Schrödinger type operators,
London Mathematical Society Lecture Note Series, Vol. 271, Cambridge University Press, Cambridge, 2000.
- Gadella M., Kuru S., Negro J.,
Self-adjoint Hamiltonians with a mass jump: general matching conditions,
Phys. Lett. A 362 (2007), 265-268.
- Gadella M., Negro J., Nieto L.M.,
Bound states and scattering coefficients of the −aδ(x)+bδ'(x) potential,
Phys. Lett. A 373 (2009), 1310-1313.
- Fernández C., Palma G., Prado H.,
Resonances for Hamiltonians with a delta perturbation in one dimension,
J. Phys. A: Math. Gen. 38 (2005), 7509-7518.
- Gadella M., Heras F.J.H., Negro J., Nieto L.M.,
A delta well with a mass jump,
J. Phys. A: Math. Theor. 42 (2009), 465207, 11 pages.
- Álvarez J.J., Gadella M., Heras F.J.H., Nieto L.M.,
A one-dimensional model of resonances with a delta barrier and mass jump,
Phys. Lett. A 373 (2009), 4022-4027.
- Witten E.,
Dynamical breaking of supersymmetry,
Nuclear Phys. B 185 (1981), 513-554.
- Mielnik B.,
Factorization method and new potentials with the oscillator spectrum,
J. Math. Phys. 25 (1984), 3387-3389.
- Fernández D.J., New hydrogen-like potentials,
Lett. Math. Phys. 8 (1984), 337-343,
quant-ph/0006119.
- Andrianov A.A., Borisov N.V., Ioffe M.V.,
Quantum systems with identical energy spectra,
JETP Lett. 39 (1984), 93-97.
- Andrianov A.A., Borisov N.V., Ioffe M.V.,
The factorization method and quantum systems with equivalent energy spectra,
Phys. Lett. A 105 (1984), 19-22.
- Sukumar C.V.,
Supersymmetric quantum mechanics of one-dimensional systems,
J. Phys. A: Math. Gen. 18 (1985), 2917-2936.
- Sukumar C.V.,
Supersymmetric quantum mechanics and the inverse scattering method,
J. Phys. A: Math. Gen. 18 (1985), 2937-2955.
- Sukumar C.V.,
Supersymmetry, potentials with bound states at arbitrary energies and multi-soliton configurations,
J. Phys. A: Math. Gen. 19 (1986), 2297-2316.
- Sukumar C.V.,
Supersymmetry and potentials with bound states at arbitrary energies. II,
J. Phys. A: Math. Gen. 20 (1987), 2461-2481.
- Beckers J., Dehin D., Hussin V.,
Symmetries and supersymmetries of the quantum harmonic oscillator,
J. Phys. A: Math. Gen. 20 (1987), 1137-1154.
- Alves N.A., Drigo Filho E.,
The factorization method and supersymmetry,
J. Phys. A: Math. Gen. 21 (1988), 3215-3225.
- Lahiri A., Roy P.K., Bagchi B.,
Supersymmetry in quantum mechanics,
Internat. J. Modern Phys. A 5 (1990), 1383-1456.
- Roy B., Roy P., Roychoudhury R.,
On solutions of quantum eigenvalue problems: a supersymmetric approach,
Fortschr. Phys. 39 (1991), 211-258.
- de Lange O.L., Raab R.E.,
Operator methods in quantum mechanics,
The Clarendon Press, Oxford University Press, New York, 1991.
- Baye D.,
Phase-equivalent potentials for arbitrary modifications of the bound spectrum,
Phys. Rev. A 48 (1993), 2040-2047.
- Sparenberg J.-M., Baye D.,
Supersymmetric transformations of real potentials on the line,
J. Phys. A: Math. Gen. 28 (1995), 5079-5095.
- Bagchi B.,
Supersymmetry in quantum and classical mechanics,
Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Vol. 116. Chapman & Hall/CRC, Boca Raton, FL, 2001.
- Cooper F., Khare A., Sukhatme U.,
Supersymmetry in quantum mechanics,
World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
- Mielnik B., Rosas-Ortiz O.,
Factorization: little or great algorithm?,
J. Phys. A: Math. Gen. 37 (2004), 10007-10035.
- Andrianov A.A., Cannata F.,
Nonlinear supersymmetry for spectral design in quantum mechanics,
J. Phys. A: Math. Gen. 37 (2004), 10297-10321,
hep-th/0407077.
- Plyushchay M.,
Nonlinear supersymmetry: from classical to quantum mechanics,
J. Phys. A: Math. Gen. 37 (2004), 10375-10384,
hep-th/0402025.
- Sukumar C.V.,
Supersymmetric quantum mechanics and its applications,
AIP Conf. Proc. 744 (2005), 166-235.
- Fernández D.J., Fernández-García N.,
Higher-order supersymmetric quantum mechanics,
AIP Conf. Proc. 744 (2005), 236-273,
quant-ph/0502098.
- Dong S.-H.,
Factorization method in quantum mechanics,
Fundamental Theories of Physics, Vol. 150, Springer, Dordrecht, 2007.
- Andrianov A.A., Sokolov A.V.,
Factorization of nonlinear supersymmetry in one-dimensional quantum mechanics. I. General classification of reducibility and analysis of the third-order
algebra,
J. Math. Sci. 143 (2007), 2707-2722,
arXiv:0710.5738.
- Sokolov A.V.,
Factorization of nonlinear supersymmetry in one-dimensional quantum mechanics. II. Proofs of theorems on reducibility,
J. Math. Sci. 151 (2008), 2924-2936,
arXiv:0903.2835.
- Fernández D.J.,
Supersymmetric quantum mechanics,
AIP Conf. Proc. 1287 (2010), 3-36,
arXiv:0910.0192.
- Fernández D.J., Glasser M.L., Nieto L.M.,
New isospectral oscillator potentials,
Phys. Lett. A 240 (1998), 15-20.
- Fernández D.J., Hussin V., Mielnik B.,
A simple generation of exactly solvable anharmonic oscillators,
Phys. Lett. A 244 (1998), 309-316.
- Rosas-Ortiz J.O.,
New families of isospectral hydrogen-like potentials,
J. Phys. A: Math. Gen. 31 (1998), L507-L513,
quant-ph/9803029.
- Rosas-Ortiz J.O.,
Exactly solvable hydrogen-like potentials and factorization method,
J. Phys. A: Math. Gen. 31 (1998), 10163-10179,
quant-ph/9806020.
- Contreras-Astorga A., Fernández D.J.,
Supersymmetric partners of the trigonometric Pöschl-Teller potentials,
J. Phys. A: Math. Theor. 41 (2008), 475303, 18 pages,
arXiv:0809.2760.
- Díaz J.I., Negro J., Nieto L.M., Rosas-Ortiz O.,
The supersymmetric modified Pöschl-Teller and delta-well potentials,
J. Phys. A: Math. Gen. 32 (1999), 8447-8460,
quant-ph/9910017.
- Uchino T., Tsutsui I.,
Supersymmetric quantum mechanics with a point singularity,
Nuclear Phys. B 662 (2003), 447-460,
quant-ph/0210084.
- Uchino T., Tsutsui I.,
Supersymmetric quantum mechanics under point singularities,
J. Phys. A: Math. Gen. 36 (2003), 6821-6846,
hep-th/0302089.
- Fülöp T., Tsutsui I., Cheon T.,
Spectral properties on a circle with a singularity,
J. Phys. Soc. Japan 72 (2003), 2737-2746,
quant-ph/0307002.
- Correa F., Nieto L.M., Plyushchay M.S.,
Hidden nonlinear su(2|2) superunitary symmetry of N=2 superextended 1D Dirac delta potential problem,
Phys. Lett. B 659 (2008), 746-753,
arXiv:0707.1393.
- Correa F., Jakubsky V., Nieto L.M., Plyushchay M.S.,
Self-isospectrality, special supersymmetry, and their effect on the band structure,
Phys. Rev. Lett. 101 (2008), 030403, 4 pages,
arXiv:0801.1671.
- Correa F., Jakubsky V., Plyushchay M.S.,
Finite-gap systems, tri-supersymmetry and self-isospectrality,
J. Phys. A: Math. Theor. 41 (2008), 485303, 35 pages,
arXiv:0806.1614.
- Correa F., Plyushchay M.S.,
Hidden supersymmetry in quantum bosonic systems,
Ann. Physics 322 (2007), 2493-2500,
hep-th/0605104.
- Jakubsky V., Nieto L.M., Plyushchay M.S.,
The origin of hidden supersymmetry,
Phys. Lett. B 692 (2010), 51-56,
arXiv:1004.5489.
- Andrianov A.A., Ioffe M.V., Spiridonov V.,
Higher-derivative supersymmetry and the Witten index,
Phys. Lett. A 174 (1993), 273-279,
hep-th/9303005.
- Andrianov A.A., Ioffe M.V., Cannata F., Dedonder J.-P.,
Second order derivative supersymmetry, q deformations and the scattering problem,
Internat. J. Modern Phys. A 10 (1995), 2683-2702,
hep-th/9404061.
- Bagrov V.G., Samsonov B.F.,
Darboux transformation of the Schrödinger equation,
Phys. Particles Nuclei 28 (1997), 374-397.
- Fernández D.J.,
SUSUSY quantum mechanics,
Internat. J. Modern Phys. A 12 (1997), 171-176,
quant-ph/9609009.
- Flügge S.,
Practical quantum mechanics,
Springer-Verlag, Berlin, 1999.
- Mielnik B., Nieto L.M., Rosas-Ortiz O.,
The finite difference algorithm for higher order supersymmetry,
Phys. Lett. A 269 (2000), 70-78,
quant-ph/0004024.
- Fernández D.J., Salinas-Hernández E.,
The confluent algorithm in second order supersymmetric quantum mechanics,
J. Phys. A: Math. Gen. 36 (2003), 2537-2543,
quant-ph/0303123.
- Fernández D.J., Salinas-Hernández E.,
Wronskian formula for confluent second-order supersymmetric quantum mechanics,
Phys. Lett. A 338 (2005), 13-18,
quant-ph/0502147.
- Fernández D.J., Muñoz R., Ramos A.,
Second order SUSY transformations with 'complex energies',
Phys. Lett. A 308 (2003), 11-16,
quant-ph/0212026.
- Rosas-Ortiz O., Muñoz R.,
Non-Hermitian SUSY hydrogen-like Hamiltonians with real spectra,
J. Phys. A: Math. Gen. 36 (2003), 8497-8506,
quant-ph/0302190.
- Fernández-García N., Rosas-Ortiz O.,
Gamow-Siegert functions and Darboux-deformed short range potentials,
Ann. Physics 323 (2008), 1397-1414,
arXiv:0810.5597.
|
|