|
SIGMA 7 (2011), 039, 16 pages arXiv:1011.0288
https://doi.org/10.3842/SIGMA.2011.039
Essential Parabolic Structures and Their Infinitesimal Automorphisms
Jesse Alt
School of Mathematics, University of the Witwatersrand, P O Wits 2050, Johannesburg, South Africa
Received November 02, 2010, in final form April 11, 2011; Published online April 14, 2011
Abstract
Using the theory of Weyl structures, we give a natural generalization of the notion of essential conformal structures and conformal Killing fields to arbitrary parabolic geometries. We show that a parabolic structure is inessential whenever the automorphism group acts properly on the base space. As a corollary of the generalized Ferrand-Obata theorem proved by C. Frances, this proves a generalization of the ''Lichnérowicz conjecture'' for conformal Riemannian, strictly pseudo-convex CR, and quaternionic/octonionic contact manifolds in positive-definite signature. For an infinitesimal automorphism with a singularity, we give a generalization of the dictionary introduced by Frances for conformal Killing fields, which characterizes (local) essentiality via the so-called holonomy associated to a singularity of an infinitesimal automorphism.
Key words:
essential structures; infinitesimal automorphisms; parabolic geometry; Lichnérowicz conjecture.
pdf (412 Kb)
tex (25 Kb)
References
- Alekseevski D.V.,
Groups of conformal transformations of Riemannian spaces,
Sb. Math. 18 (1972), 285-301.
- Biquard O.,
Métriques d'Einstein asymptotiquement symétriques,
Astérisque (2000), no. 265 (English transl.: Asymptotically symmetric Einstein metrics, SMF/AMS Texts and Monographs, Vol. 13,
American Mathematical Society, Providence, 2006).
- Cap A.,
Infinitesimal automorphisms and deformations of parabolic geometries,
J. Eur. Math. Soc. 10 (2008), 415-437,
math.DG/0508535.
- Cap A., Slovák J.,
Weyl structures for parabolic geometries,
Math. Scand. 93 (2003), 53-90,
math.DG/0001166.
- Cap A., Slovák J.,
Parabolic geometries. I Background and general theory,
Mathematical Surveys and Monographs, Vol. 154, American Mathematical Society, Providence, RI, 2009.
- Duistermaat J.J., Kolk J.A.C.,
Lie groups, Universitext, Springer-Verlag, Berlin, 2000.
- Ferrand J.,
The action of conformal transformations on a Riemannian manifold,
Math. Ann. 304 (1996), 277-291.
- Frances C.,
Sur le groupe d'automorphismes des géométries paraboliques de rang un,
Ann. Sci. École Norm. Sup. (4) 40 (2007), 741-764
(English version: A Ferrand-Obata theorem for rank one parabolic geometries,
math.DG/0608537).
- Frances C.,
Essential conformal structures in Riemannian and Lorentzian geometry,
in Recent Developments in Pseudo-Riemannian Geometry, ESI Lectures in Mathematics and Physics, ESI Lect. Math. Phys.,
Eur. Math. Soc., Zürich, 2008, 231-260.
- Frances C.,
Local dynamics of conformal vector fields,
arXiv:0909.0044.
- Gover A.R.,
Laplacian operators and Q-curvature of conformally Einstein manifolds,
Math. Ann. 336 (2006), 311-334,
math.DG/0506037.
- Ivanov S., Vassilev D.,
Conformal quaternionic contact curvature and the local sphere theorem,
J. Math. Pures Appl. (9) 93 (2010), 277-307,
arXiv:0707.1289.
- Schoen R.,
On the conformal and CR automorphism groups,
Geom. Funct. Anal. 5 (1995), 464-481.
- Webster S.M.,
On the transformation group of a real hypersurface,
Trans. Amer. Math. Soc. 231 (1977), 179-190.
|
|