|
SIGMA 7 (2011), 061, 14 pages arXiv:1105.4413
https://doi.org/10.3842/SIGMA.2011.061
Contribution to the Proceedings of the Conference “Symmetries and Integrability of Difference Equations (SIDE-9)”
Soliton Taxonomy for a Modification of the Lattice Boussinesq Equation
Jarmo Hietarinta a, b and Da-jun Zhang c
a) Department of Physics and Astronomy, University of Turku, FIN-20014 Turku, Finland
b) LPTHE / CNRS / UPMC, 4 place Jussieu 75252 Paris CEDEX 05, France
c) Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China
Received May 24, 2011, in final form July 01, 2011; Published online July 06, 2011; Figure 3 changed July 20, 2011
Abstract
Integrable multi-component lattice equations of the Boussinesq family
have been known for some time. Recently some new equations of this
type were found using the Consistency-Around-the-Cube approach. Here
we investigate one of these models, B-2, and in particular the
consequences of a nonzero deformation parameter b0>0, which allows
special kinds of solitons in the parameter range −b0/3<k<b0.
Key words:
lattice Boussinesq equation; integrable lattice equations; solitons; kinks.
pdf (1183 kb)
tex (726 kb)
[previous version:
pdf (1183 kb)
tex (727 kb)]
References
- Tongas A., Nijhoff F.,
The Boussinesq integrable system: compatible lattice and continuum structures,
Glasg. Math. J. 47 (2005), no. A, 205-219,
nlin.SI/0402053.
- Bobenko A.I., Suris Y.B.,
Integrable systems on quad-graphs,
Int. Math. Res. Not. 2002 (2002), no. 11, 573-611,
nlin.SI/0110004.
- Nijhoff F.W., Walker A.J.,
The discrete and continuous Painlevé VI hierarchy and the Garnier systems,
Glasg. Math. J. 43 (2001), no. A, 109-123,
nlin.SI/0001054.
- Nijhoff F.W.,
Lax pair for the Adler (lattice Krichever-Novikov) system,
Phys. Lett. A 297 (2002), 49-58,
nlin.SI/0110027.
- Hietarinta J.,
Boussinesq-like multi-component lattice equations and multi-dimensional consistency,
J. Phys. A: Math. Theor. 44 (2011), 165204, 22 pages,
arXiv:1011.1978.
- Hietarinta J., Zhang D.J.,
Multisoliton solutions to the lattice Boussinesq equation,
J. Math. Phys. 51 (2010), 033505, 12 pages,
arXiv:0906.3955.
- Atkinson J., Hietarinta J., Nijhoff F.,
Seed and soliton solutions of Adler's lattice equation,
J. Phys. A: Math. Theor. 40 (2007), F1-F8,
nlin.SI/0609044.
- Freeman N.C., Nimmo J.J.C.,
Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: the Wronskian technique,
Phys. Lett. A 95 (1983), 1-3.
|
|