Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 8 (2012), 003, 12 pages      arXiv:1109.2867      https://doi.org/10.3842/SIGMA.2012.003

Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds

Andrei V. Smilga
SUBATECH, Université de Nantes, 4 rue Alfred Kastler, BP 20722, Nantes 44307, France

Received November 10, 2011, in final form January 04, 2012; Published online January 08, 2012

Abstract
We present the proof of the HRR theorem for a generic complex compact manifold by evaluating the functional integral for the Witten index of the appropriate supersymmetric quantum mechanical system.

Key words: index; Dolbeault; supersymmetry.

pdf (382 kb)   tex (19 kb)

References

  1. Witten E., Quantum field theory and Jones polynomials, Comm. Math. Phys. 121 (1989), 351-399.
  2. Atiyah M.F., Singer I.M., The index of elliptic operators. I, Ann. of Math. (2) 87 (1968), 484-530.
    Atiyah M.F., Singer I.M., The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604.
    Atiyah M.F., Singer I.M., The index of elliptic operators. IV, Ann. of Math. (2) 93 (1971), 119-138.
    Atiyah M.F., Singer I.M., The index of elliptic operators. V, Ann. of Math. (2) 93 (1971), 139-149.
  3. Alvarez-Gaumé L., Supersymmetry and the Atiyah-Singer index theorem, Comm. Math. Phys. 90 (1983), 161-173.
    Friedan D., Windey P., Supersymmetric derivation of the Atiyah-Singer index and the chiral anomaly, Nuclear Phys. B 235 (1984), 395-416.
    Windey P., Supersymmetric quantum mechanics and the Atiyah-Singer index theorem, Acta Phys. Polon. B 15 (1984), 435-452.
  4. Witten E., Dynamical breaking of supersymmetry, Nuclear Phys. B 188 (1981), 513-554.
    Witten E., Constraints on supersymmetry breaking, Nuclear Phys. B 202 (1982), 253-316.
  5. Ivanov E.A., Smilga A.V., Dirac operator on complex manifolds and supersymmetric quantum mechanics, arXiv:1012.2069.
  6. Bismut J.-M., A local index theorem for non-Kähler manifolds, Math. Ann. 284 (1989), 681-699.
  7. Braden H.W., Sigma-models with torsion, Ann. Physics 171 (1986), 433-462.
  8. Mavromatos N.E., A note on the Atiyah-Singer index theorem for manifolds with totally antisymmetric H torsion, J. Phys. A: Math. Gen. 21 (1988), 2279-2290.
  9. Fedoruk S.A., Ivanov E.A., Smilga A.V., Real and complex supersymmetric d=1 sigma models with torsion, in preparation.
  10. Kirchberg A., Länge J.D., Wipf A., Extended supersymmetries and the Dirac operator, Ann. Physics 315 (2005), 467-487, hep-th/0401134.
  11. Smilga A.V., Dolbeault complex on S4\{·} and S6\{·} through supersymmetric glasses, SIGMA 7 (2011), 105, 14 pages, arXiv:1105.3935.
  12. Cecotti S., Girardello L., Functional measure, topology and dynamical supersymmetry breaking, Phys. Lett. B 110 (1982), 39-43.
    Girardello L., Imbimbo C., Mukhi S., On constant configurations and evaluation of the Witten index, Phys. Lett. B 132 (1983), 69-74.
  13. Obukhov Y.N., Spectral geometry of the Riemann-Cartan space-time, Nuclear Phys. B 212 (1983), 237-254.
    Peeters K., Waldron A., Spinors on manifolds with boundary: APS index theorem with torsion, J. High Energy Phys. 1999 (1999), no. 2, 024, 42 pages, hep-th/9901016.
  14. Gauduchon P., Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), A387-A390.
  15. Hirzebruch F., Arithmetic genera and the theorem of Riemann-Roch for algebraic varietes, Proc. Nat. Acad. Sci. USA 40 (1954), 110-114.
    Hirzebruch F., Topological methods in algebraic geometry, Springer-Verlag, Berlin, 1978.
  16. Wu Y.S., Zee A., Massless fermions and Kaluza-Klein theory with torsion, J. Math. Phys. 25 (1984), 2696-2703.
  17. Smilga A.V., Non-integer flux: why it does not work, arXiv:1104.3986.


Previous article  Next article   Contents of Volume 8 (2012)