| 
 SIGMA 8 (2012), 012, 14 pages      arXiv:1101.4345     
https://doi.org/10.3842/SIGMA.2012.012 
New Variables of Separation for the Steklov-Lyapunov System
Andrey V. Tsiganov
 St. Petersburg State University, St. Petersburg, Russia
 
 
Received October 31, 2011, in final form March 12, 2012; Published online March 20, 2012 
Abstract
 
A  rigid body in an ideal fluid  is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra $e(3) = so(3)\ltimes\mathbb R^3$.  We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov-Lyapunov system and it's gyrostatic deformation.
  
 Key words:
bi-Hamiltonian geometry; variables of separation. 
pdf (379 kb)  
tex (21 kb)
 
 
References
 
- Adler M., van Moerbeke P., Vanhaecke P., Algebraic integrability, Painlevé
  geometry and Lie algebras, A Series of Modern Surveys in
  Mathematics, Vol. 47, Springer-Verlag, Berlin, 2004.
 
- Belokolos E.D., Bobenko A.I., Enol'skii V.Z., Its A.R., Matveev V.B.,
  Algebro-geometric approach to nonlinear integrable equations, Springer Series
  in Nonlinear Dynamics, Springer-Verlag, Berlin, 1994.
 
- Bobenko A.I., Euler equations on the algebras e(3) and so(4).
  Isomorphism of the integrable cases, Funct. Anal. Appl.
  20 (1986), 53-56.
 
- Bolsinov A.V., Fedorov Y.N., Steklov-Lyapunov type systems, Preprint, 2003,
  available at
  http://upcommons.upc.edu/e-prints/bitstream/2117/900/4/0303fedorov.pdf.
 
- Borisov A.V., Tsiganov A.V. (Editors), Klebsch system. Separation of variables,
  explicit integration?, RCD, Moscow - Izhevsk, 2009.
 
- Bueken P., Vanhaecke P., The moduli problem for integrable systems: the example
  of a geodesic flow on SO(4), J. London Math. Soc.
  62 (2000), 357-369.
 
- Falqui G., Pedroni M., Separation of variables for bi-Hamiltonian systems,
  Math. Phys. Anal. Geom. 6 (2003), 139-179,
  nlin.SI/0204029.
 
- Fedorov Y., Basak I., Separation of variables and explicit theta-function
  solution of the classical Steklov-Lyapunov systems: a geometric and
  algebraic geometric background, Regul. Chaotic Dyn. 16
  (2011), 374-395, arXiv:0912.1788.
 
- Kirchhoff G.R., Vorlesungen über mathematische Physik Mechanik, Leipzig,
  1874.
 
- Kolosoff G.V., Sur le mouvement d'un corp solide dans un liquide indéfini,
  C.R. Acad. Sci. Paris 169 (1919), 685-686.
 
- Kötter F., Die von Steklow und Liapunow entdeckten integralen Fälle der
  Bewegung eines starren Körpers in einer Flüssigkeit, Sitzungsber.
  König. Preuss. Akad. Wiss. 6 (1900), 79-87.
 
- Kötter F., Über die Bewegung eines festen Körpers in einer Flussigkeit,
  J. für Math. 109 (1892), 51-81, 89-111.
 
- Kuznetsov V., Vanhaecke P., Bäcklund transformations for finite-dimensional
  integrable systems: a geometric approach, J. Geom. Phys. 44
  (2002), 1-40, nlin.SI/0004003.
 
- Lyapunov A.M., New integrable case of the equations of motion of a rigid body
  in a fluid, Fortschr. Math. 25 (1897), 1501-1504.
 
- Novikov S.P., Shmel'tser I., Periodic solutions of Kirchhoff equations for
  the free motion of a rigid body in a fluid and the extended
  Lyusternik-Shnirel'man-Morse theory (LSM). I, Funct. Anal.
  Appl. 15 (1981), 197-207.
 
- Rubanovsky V.N., Integrable cases in the problem of a heavy solid moving in a
  fluid, Dokl. Akad. Nauk SSSR 180 (1968), 556-559.
 
- Stekloff W., Ueber die Bewegung eines festen Körpers in einer
  Flüssigkeit, Math. Ann. 42 (1893), 273-274.
 
- Tsiganov A.V., New variables of separation for particular case of the
  Kowalevski top, Regul. Chaotic Dyn. 15 (2010), 659-669,
  arXiv:1001.4599.
 
- Tsiganov A.V., On an isomorphism of integrable cases of the Euler equations
  on the bi-Hamiltonian manifolds e(3) and so(4),
  J. Math. Sci. 136 (2006), 3641-3647.
 
- Tsiganov A.V., On bi-Hamiltonian geometry of the Lagrange top,
  J. Phys. A: Math. Theor. 41 (2008), 315212, 12 pages,
  arXiv:0802.3951.
 
- Tsiganov A.V., On bi-Hamiltonian structure of some integrable systems on
so*(4), J. Nonlinear Math. Phys. 15 (2008),
  171-185, nlin.SI/0703062.
 
- Tsiganov A.V., On bi-integrable natural Hamiltonian systems on Riemannian
  manifolds, J. Nonlinear Math. Phys. 18 (2011), 245-268,
  arXiv:1006.3914.
 
- Tsiganov A.V., On isomorphism of the Steklov-Lyapunov system with the
  potential motion on the sphere, Dokl. Math. 71 (2005),
  145-147.
 
- Tsiganov A.V., On natural Poisson bivectors on the sphere,
  J. Phys. A: Math. Theor. 44 (2011), 105203, 21 pages,
  arXiv:1010.3492.
 
- Tsiganov A.V., On the Steklov-Lyapunov case of the rigid body motion,
  Regul. Chaotic Dyn. 9 (2004), 77-89,
  nlin.SI/0406017.
 
- Tsiganov A.V., On two different bi-Hamiltonian structures for the Toda
  lattice, J. Phys. A: Math. Gen. 40 (2007), 6395-6406,
  nlin.SI/0701062.
 
- Weierstrass K., Mathematische Werke I, Mayer & Muller, Berlin, 1894.
 
 
 | 
 |