| 
 SIGMA 8 (2012), 020, 78 pages      arXiv:1109.4812     
https://doi.org/10.3842/SIGMA.2012.020 
Contribution to the Special Issue “Loop Quantum Gravity and Cosmology” 
Colored Tensor Models - a Review
Razvan Gurau a and James P. Ryan b
 a) Perimeter Institute for Theoretical Physics, 31 Caroline St. N, ON N2L 2Y5, Waterloo, Canada
 b) MPI für Gravitationsphysik, Albert Einstein Institute, Am Mühlenberg 1, D-14476 Potsdam, Germany
 
 
Received October 05, 2011, in final form March 13, 2012; Published online April 10, 2012 
Abstract
 
Colored tensor models have recently burst onto the scene as a promising conceptual and computational
 tool in the investigation of problems of random geometry in dimension three and higher. We present a snapshot
 of the cutting edge in this rapidly expanding research field.  Colored tensor models have been shown to share
many of the properties of their direct ancestor, matrix models, which encode a theory of fluctuating two-dimensional
surfaces. These features include the possession of Feynman graphs encoding topological spaces, a 1/N expansion
of graph amplitudes,
embedded matrix models inside the tensor structure, a resumable leading order with critical behavior and a continuum
large volume limit,  Schwinger-Dyson equations satisfying a Lie algebra (akin to the Virasoro algebra in two dimensions),
non-trivial classical solutions and so on.  In this review, we give a detailed introduction of colored tensor models and
 pointers to current and future research directions.
  
 Key words:
colored tensor models; 1/N expansion. 
pdf (1282 kb)  
tex (824 kb)
 
 
References
 
- Alspach B., The wonderful Walecki construction, Bull. Inst. Combin.
  Appl. 52 (2008), 7-20.
 
- Ambjørn J., Quantization of geometry, in Fluctuating Geometries in
  Statistical Mechanics and Field Theory (Les Houches, 1994), Editors
  F. David, P. Ginsparg, J. Zinn-Justin, North-Holland, Amsterdam, 1996,
  77-193, hep-th/9411179.
 
- Ambjørn J., Simplicial Euclidean and Lorentzian quantum gravity,
  gr-qc/0201028.
 
- Ambjørn J., Durhuus B., Fröhlich J., Orland P., The appearance of
  critical dimensions in regulated string theories, Nuclear Phys. B
  270 (1986), 457-482.
 
- Ambjørn J., Durhuus B., Jónsson T., Quantum geometry. A statistical field
  theory approach, Cambridge Monographs on Mathematical Physics, Cambridge
  University Press, Cambridge, 1997.
 
- Ambjørn J., Durhuus B., Jónsson T., Summing over all genera for d>1:
  a toy model, Phys. Lett. B 244 (1990), 403-412.
 
- Ambjørn J., Durhuus B., Jónsson T., Three-dimensional simplicial quantum
  gravity and generalized matrix models, Modern Phys. Lett. A
  6 (1991), 1133-1146.
 
- Ambjørn J., Görlich A., Jurkiewicz J., Loll R., CDT - an entropic theory
  of quantum gravity, arXiv:1007.2560.
 
- Ambjørn J., Görlich A., Jurkiewicz J., Loll R., Gizbert-Studnicki J.,
  Trzesniewski T., The semiclassical limit of causal dynamical
  triangulations, Nuclear Phys. B 849 (2011), 144-165,
  arXiv:1102.3929.
 
- Ambjørn J., Jordan S., Jurkiewicz J., Loll R., Second-order phase transition
  in causal dynamical triangulations, Phys. Rev. Lett. 107
  (2011), 211303, 5 pages, arXiv:1108.3932.
 
- Ambjørn J., Jurkiewicz J., Scaling in four-dimensional quantum gravity,
  Nuclear Phys. B 451 (1995), 643-676,
  hep-th/9503006.
 
- Ambjørn J., Jurkiewicz J., Loll R., Reconstructing the universe,
  Phys. Rev. D 72 (2005), 064014, 24 pages,
  hep-th/0505154.
 
- Ambjørn J., Jurkiewicz J., Makeenko Y.M., Multiloop correlators for
  two-dimensional quantum gravity, Phys. Lett. B 251 (1990),
  517-524.
 
- Bahr B., Dittrich B., Ryan J.P., Spin foam models with finite groups,
  arXiv:1103.6264.
 
- Baratin A., Girelli F., Oriti D., Diffeomorphisms in group field theories,
  Phys. Rev. D 83 (2011), 104051, 22 pages,
  arXiv:1101.0590.
 
- Baratin A., Oriti D., Group field theory with noncommutative metric variables,
  Phys. Rev. Lett. 105 (2010), 221302, 4 pages,
  arXiv:1002.4723.
 
- Baratin A., Oriti D., Quantum simplicial geometry in the group field theory
  formalism: reconsidering the Barrett-Crane model, New J. Phys.
  13 (2011), 125011, 28 pages, arXiv:1108.1178.
 
- Ben Geloun J., Classical group field theory, arXiv:1107.3122.
 
- Ben Geloun J., Ward-Takahashi identities for the colored Boulatov model,
  J. Phys. A: Math. Theor. 44 (2011), 415402, 30 pages,
  arXiv:1106.1847.
 
- Ben Geloun J., Bonzom V., Radiative corrections in the Boulatov-Ooguri tensor
  model: the 2-point function, Internat. J. Theoret. Phys. 50
  (2011), 2819-2841, arXiv:1101.4294.
 
- Ben Geloun J., Gurau R., Rivasseau V., EPRL/FK group field theory,
  Europhys. Lett. 92 (2010), 60008, 6 pages,
  arXiv:1008.0354.
 
- Ben Geloun J., Gurau R., Rivasseau V., Vanishing β-function for
  Grosse-Wulkenhaar model in a magnetic field, Phys. Lett. B
  671 (2009), 284-290, arXiv:0805.4362.
 
- Ben Geloun J., Krajewski T., Magnen J., Rivasseau V., Linearized group field
  theory and power-counting theorems, Classical Quantum Gravity
  27 (2010), 155012, 14 pages, arXiv:1002.3592.
 
- Ben Geloun J., Magnen J., Rivasseau V., Bosonic colored group field theory,
  Eur. Phys. J. C Part. Fields 70 (2010), 1119-1130,
  arXiv:0911.1719.
 
- Benedetti D., Gurau R., Phase transition in dually weighted colored tensor
  models, Nuclear Phys. B 855 (2012), 420-437,
  arXiv:1108.5389.
 
- Benedetti D., Henson J., Imposing causality on a matrix model, Phys.
  Lett. B 678 (2009), 222-226, arXiv:0812.4261.
 
- Bernoulli J., Ars conjectandi, 1713.
 
- Bessis D., Itzykson C., Zuber J.B., Quantum field theory techniques in
  graphical enumeration, Adv. in Appl. Math. 1 (1980),
  109-157.
 
- Bialas P., Burda Z., Phase transition in fluctuating branched geometry,
  Phys. Lett. B 384 (1996), 75-80, hep-lat/9605020.
 
- Bilke S., Burda Z., Krzywicki A., Petersson B., Tabaczek J., Thorleifsson G.,
  4d simplicial quantum gravity: matter fields and the corresponding
  effective action, Phys. Lett. B 432 (1998), 279-286,
  hep-lat/9804011.
 
- Blau M., Thompson G., Topological gauge theories from supersymmetric quantum
  mechanics on spaces of connections, Internat. J. Modern Phys. A
  8 (1993), 573-585, hep-th/9112064.
 
- Bonzom V., Multicritical tensor models and hard dimers on spherical random
  lattices, arXiv:1201.1931.
 
- Bonzom V., Gurau R., Riello A., Rivasseau V., Critical behavior of colored
  tensor models in the large N limit, Nuclear Phys. B 853
  (2011), 174-195, arXiv:1105.3122.
 
- Bonzom V., Gurau R., Rivasseau V., The Ising model on random lattices in
  arbitrary dimensions, arXiv:1108.6269.
 
- Bonzom V., Smerlak M., Bubble divergences from cellular cohomology,
  Lett. Math. Phys. 93 (2010), 295-305, arXiv:1004.5196.
 
- Bonzom V., Smerlak M., Bubble divergences from twisted cohomology,
  arXiv:1008.1476.
 
- Bonzom V., Smerlak M., Bubble divergences: sorting out topology from cell
  structure, Ann. Henri Poincaré 13 (2012), 185-208,
  arXiv:1103.3961.
 
- Boulatov D.V., A model of three-dimensional lattice gravity, Modern
  Phys. Lett. A 7 (1992), 1629-1646, hep-th/9202074.
 
- Boulatov D.V., Kazakov V.A., The ising model on a randomplanarlattice: the
  structure of the phase transition and the exact critical exponents,
  Phys. Lett. B 186 (1987), 379-384.
 
- Bouttier J., Di Francesco P., Guitter E., Counting colored random
  triangulations, Nuclear Phys. B 641 (2002), 519-532,
  cond-mat/0206452.
 
- Brézin É., Douglas M.R., Kazakov V., Shenker S.H., The Ising model
  coupled to 2D gravity. A nonperturbative analysis, Phys.
  Lett. B 237 (1990), 43-46.
 
- Brézin É., Itzykson C., Parisi G., Zuber J.B., Planar diagrams,
  Comm. Math. Phys. 59 (1978), 35-51.
 
- Brézin É., Kazakov V.A., Exactly solvable field theories of closed
  strings, Phys. Lett. B 236 (1990), 144-150.
 
- Caravelli F., A simple proof of orientability in colored group field theory,
  arXiv:1012.4087.
 
- Carrozza S., Oriti D., Bounding bubbles: the vertex representation of 3d group
  field theory and the suppression of pseudomanifolds, Phys. Rev. D
  85 (2012), 044004, 22 pages, arXiv:1104.5158.
 
- David F., A model of random surfaces with nontrivial critical behaviour,
  Nuclear Phys. B 257 (1985), 543-576.
 
- David F., Conformal field theories coupled to 2-D gravity in the
  conformal gauge, Modern Phys. Lett. A 3 (1988), 1651-1656.
 
- David F., Simplicial quantum gravity and random lattices, in Gravitation and
  Quantizations (Les Houches, 1992), Editors J. Zinn-Justin, B. Julia,
  North-Holland, Amsterdam, 1995, 679-749, hep-th/9303127.
 
- David F., Hagendorf C., Wiese K.J., A growth model for RNA secondary
  structures, J. Stat. Mech. Theory Exp. 2008 (2008), P04008,
  43 pages, arXiv:0711.3421.
 
- De Pietri R., Petronio C., Feynman diagrams of generalized matrix models and
  the associated manifolds in dimension four, J. Math. Phys.
  41 (2000), 6671-6688, gr-qc/0004045.
 
- Di Francesco P., Rectangular matrix models and combinatorics of colored graphs,
  Nuclear Phys. B 648 (2003), 461-496,
  cond-mat/0208037.
 
- Di Francesco P., Eynard B., Guitter E., Coloring random triangulations,
  Nuclear Phys. B 516 (1998), 543-587,
  cond-mat/9711050.
 
- Di Francesco P., Ginsparg P.H., Zinn-Justin J., 2D gravity and random matrices,
  Phys. Rep. 254 (1995), 1-133, hep-th/9306153.
 
- Di Mare A., Oriti D., Emergent matter from 3D generalized group field
  theories, Classical Quantum Gravity 27 (2010), 145006,
  17 pages, arXiv:1001.2702.
 
- Dijkgraaf R., Verlinde H., Verlinde E., Loop equations and Virasoro
  constraints in nonperturbative two-dimensional quantum gravity,
  Nuclear Phys. B 348 (1991), 435-456.
 
- Disertori M., Gurau R., Magnen J., Rivasseau V., Vanishing of beta function of
  non-commutative Φ44 theory to all orders, Phys. Lett. B
  649 (2007), 95-102, hep-th/0612251.
 
- Distler J., Kawai H., Conformal field theory and 2D quantum gravity,
  Nuclear Phys. B 321 (1989), 509-527.
 
- Dittrich B., Eckert F., Martin-Benito M., Coarse-graining spin nets and spin
  foams, in preparation.
 
- Douglas M.R., Shenker S.H., Strings in less than one dimension, Nuclear
  Phys. B 335 (1990), 635-654.
 
- Duplantier B., Conformal random geometry, in Mathematical Statistical Physics,
  Editors A. Bovier, F. Dunlop, F. den Hollander, A. van Enter, J. Dalibard,
  Elsevier, Amsterdam, 2006, 101-217, math-ph/0608053.
 
- Engle J., Livine E., Pereira R., Rovelli C., LQG vertex with finite Immirzi
  parameter, Nuclear Phys. B 799 (2008), 136-149,
  arXiv:0711.0146.
 
- Engle J., Pereira R., Rovelli C., Loop-quantum-gravity vertex amplitude,
  Phys. Rev. Lett. 99 (2007), 161301, 4 pages,
  arXiv:0705.2388.
 
- Fairbairn W.J., Livine E.R., 3D spinfoam quantum gravity: matter as a phase
  of the group field theory, Classical Quantum Gravity 24
  (2007), 5277-5297, gr-qc/0702125.
 
- Ferri M., Gagliardi C., Crystallisation moves, Pacific J. Math.
  100 (1982), 85-103.
 
- Fisher M.E., Barber M.N., Scaling theory for finite-size effects in the
  critical region, Phys. Rev. Lett. 28 (1972), 1516-1519.
 
- Freidel L., Group field theory: an overview, Internat. J. Theoret.
  Phys. 44 (2005), 1769-1783, hep-th/0505016.
 
- Freidel L., Gurau R., Group field theory renormalization in the 3D case: power
  counting of divergences, Phys. Rev. D 80 (2009), 044007,
  20 pages, arXiv:0905.3772.
 
- Freidel L., Krasnov K., A new spin foam model for 4D gravity,
  Classical Quantum Gravity 25 (2008), 125018, 36 pages,
  arXiv:0708.1595.
 
- Freidel L., Livine E.R., Ponzano-Regge model revisited. III. Feynman
  diagrams and effective field theory, Classical Quantum Gravity
  23 (2006), 2021-2061, hep-th/0502106.
 
- Freidel L., Louapre D., Nonperturbative summation over 3D discrete
  topologies, Phys. Rev. D 68 (2003), 104004, 16 pages,
  hep-th/0211026.
 
- Fukuma M., Kawai H., Nakayama R., Continuum Schwinger-Dyson equations and
  universal structures in two-dimensional quantum gravity, Internat. J.
  Modern Phys. A 6 (1991), 1385-1406.
 
- Gallavotti G., Nicolò F., Renormalization theory in four-dimensional scalar
  fields. I, Comm. Math. Phys. 100 (1985), 545-590.
 
- Girelli F., Livine E.R., A deformed Poincaré invariance for group field
  theories, Classical Quantum Gravity 27 (2010), 245018,
  15 pages, arXiv:1001.2919.
 
- Goulden I.P., Jackson D.M., Combinatorial enumeration, Dover Publications Inc.,
  Mineola, NY, 2004.
 
- Graham R.L., Knuth D.E., Patashnik O., Concrete mathematics. A foundation for
  computer science, 2nd ed., Addison-Wesley Publishing Company, Reading, MA,
  1994.
 
- Grimmett G.R., Stirzaker D.R., Probability and random processes, 3rd ed.,
  Oxford University Press, New York, 2001.
 
- Gross D.J., Migdal A.A., Nonperturbative two-dimensional quantum gravity,
  Phys. Rev. Lett. 64 (1990), 127-130.
 
- Grosse H., Wulkenhaar R., Power-counting theorem for non-local matrix models
  and renormalisation, Comm. Math. Phys. 254 (2005), 91-127,
  hep-th/0305066.
 
- Grosse H., Wulkenhaar R., Renormalisation of φ4-theory on
  noncommutative R4 in the matrix base, Comm. Math.
  Phys. 256 (2005), 305-374, hep-th/0401128.
 
- Grosse H., Wulkenhaar R., The β-function in duality-covariant
  non-commutative φ4-theory, Eur. Phys. J. C Part. Fields
  35 (2004), 277-282, hep-th/0402093.
 
- Gurau R., A generalization of the Virasoro algebra to arbitrary dimensions,
  Nuclear Phys. B 852 (2011), 592-614, arXiv:1105.6072.
 
- Gurau R., Colored group field theory, Comm. Math. Phys. 304
  (2011), 69-93, arXiv:0907.2582.
 
- Gurau R., Double scaling limit in arbitrary dimensions: a toy model,
  Phys. Rev. D 84 (2011), 124051, 11 pages,
  arXiv:1110.2460.
 
- Gurau R., Lost in translation: topological singularities in group field theory,
  Classical Quantum Gravity 27 (2010), 235023, 20 pages,
  arXiv:1006.0714.
 
- Gurau R., The 1/N expansion of colored tensor models, Ann. Henri
  Poincaré 12 (2011), 829-847, arXiv:1011.2726.
 
- Gurau R., The complete 1/N expansion of colored tensor models in arbitrary
  dimension, Ann. Henri Poincaré 13 (2012), 399-423,
  arXiv:1102.5759.
 
- Gurau R., Topological graph polynomials in colored group field theory,
  Ann. Henri Poincaré 11 (2010), 565-584,
  arXiv:0911.1945.
 
- Gurau R., Magnen J., Rivasseau V., Vignes-Tourneret F., Renormalization of
  non-commutative Φ44 field theory in x space, Comm. Math.
  Phys. 267 (2006), 515-542, hep-th/0512271.
 
- Gurau R., Rivasseau V., Parametric representation of noncommutative field
  theory, Comm. Math. Phys. 272 (2007), 811-835,
  math-ph/0606030.
 
- Gurau R., Rivasseau V., The 1/N expansion of colored tensor models in
  arbitrary dimension, Europhys. Lett. 95 (2011), 50004,
  5 pages, arXiv:1101.4182.
 
- Hempel J., 3-manifolds, AMS Chelsea Publishing, Providence, RI, 2004.
 
- Heubach S., Li N.Y., Mansour T., Staircase tilings and k-Catalan
  structures, Discrete Math. 308 (2008), 5954-5964.
 
- Kazakov V.A., Bilocal regularization of models of random surfaces,
  Phys. Lett. B 150 (1985), 282–284.
 
- Kazakov V.A., Ising model on a dynamical planar random lattice: exact solution,
  Phys. Lett. A 119 (1986), 140-144.
 
- Kazakov V.A., Staudacher M., Wynter T., Almost flat planar diagrams,
  Comm. Math. Phys. 179 (1996), 235-256,
  hep-th/9506174.
 
- Kazakov V.A., Staudacher M., Wynter T., Character expansion methods for matrix
  models of dually weighted graphs, Comm. Math. Phys. 177
  (1996), 451-468, hep-th/9502132.
 
- Kazakov V.A., Staudacher M., Wynter T., Exact solution of discrete
  two-dimensional R2 gravity, Nuclear Phys. B 471
  (1996), 309-333, hep-th/9601069.
 
- Knizhnik V.G., Polyakov A.M., Zamolodchikov A.B., Fractal structure of
  2D-quantum gravity, Modern Phys. Lett. A 3 (1988),
  819-826.
 
- Kolmogorov A.N., Foundations of the theory of probability, Chelsea Publishing
  Co., New York, 1956.
 
- Kozlov D., Combinatorial algebraic topology, Algorithms and Computation
  in Mathematics, Vol. 21, Springer, Berlin, 2008.
 
- Krajewski T., Magnen J., Rivasseau V., Tanasa A., Vitale P., Quantum
  corrections in the group field theory formulation of the
  Engle-Pereira-Rovelli-Livine and Freidel-Krasnov models, Phys.
  Rev. D 82 (2010), 124069, 20 pages, arXiv:1007.3150.
 
- Laiho J., Coumbe D., Evidence for asymptotic safety from lattice quantum
  gravity, Phys. Rev. Lett. 107 (2011), 161301, 4 pages,
  arXiv:1104.5505.
 
- Le Gall J.F., Miermont G., Scaling limits of random planar maps with large
  faces, Ann. Probab. 39 (2011), 1-69.
 
- Lins S., Gems, computers and attractors for 3-manifolds, Series on
  Knots and Everything, Vol. 5, World Scientific Publishing Co. Inc., River
  Edge, NJ, 1995.
 
- Livine E.R., Oriti D., Ryan J.P., Effective Hamiltonian constraint from group
  field theory, Classical Quantum Gravity 28 (2011), 245010,
  17 pages, arXiv:1104.5509.
 
- Livine E.R., Speziale S., New spinfoam vertex for quantum gravity,
  Phys. Rev. D 76 (2007), 084028, 14 pages,
  arXiv:0705.0674.
 
- Magnen J., Noui K., Rivasseau V., Smerlak M., Scaling behavior of
  three-dimensional group field theory, Classical Quantum Gravity
  26 (2009), 185012, 25 pages, arXiv:0906.5477.
 
- Makeenko Y., Loop equations and Virasoro constraints in matrix models,
  hep-th/9112058.
 
- Manes K., Sapounakis A., Tasoulas I., Tsikouras P., Recursive generation of
  k-ary trees, J. Integer Seq. 12 (2009), Article 09.7.7,
  18 pages.
 
- Ooguri H., Topological lattice models in four dimensions, Modern Phys.
  Lett. A 7 (1992), 2799-2810, hep-th/9205090.
 
- Oriti D., Spacetime geometry from algebra: spin foam models for
  non-perturbative quantum gravity, Rep. Progr. Phys. 64
  (2001), 1703-1757, gr-qc/0106091.
 
- Oriti D., The group field theory approach to quantum gravity, in Approaches to
  Quantum Gravity, Editor D. Oriti, Cambridge University Press, Cambridge,
  2009, 310-331, gr-qc/0607032.
 
- Oriti D., Sindoni L., Toward classical geometrodynamics from the group field
  theory hydrodynamics, New J. Phys. 13 (2011), 025006,
  44 pages, arXiv:1010.5149.
 
- Orland H., Zee A., RNA folding and large N matrix theory, Nuclear
  Phys. B 620 (2002), 456-476, cond-mat/0106359.
 
- Perini C., Rovelli C., Speziale S., Self-energy and vertexradiativecorrections
  in LQG, Phys. Lett. B 682 (2009), 78-84,
  arXiv:0810.1714.
 
- Rivasseau V., Towards renormalizing group field theory, PoS Proc. Sci.
  (2010), PoS(CNCFG2010), 004, 21 pages, arXiv:1103.1900.
 
- Rivasseau V., Vignes-Tourneret F., Wulkenhaar R., Renormalisation of
  noncommutative φ4-theory by multi-scale analysis, Comm. Math.
  Phys. 262 (2006), 565-594, hep-th/0501036.
 
- Rovelli C., Smerlak M., In quantum gravity, summing is refining,
  Classical Quantum Gravity 29 (2012), 055004, 7 pages,
  arXiv:1010.5437.
 
- Ryan J.P., Tensor models and embedded Riemann surfaces, arXiv:1104.5471.
 
- Ryan J.P., Tensor models and embedded Riemann surfaces in arbitrary dimension,
  in preparation.
 
- Salmhofer M., Renormalization. An introduction, Texts and Monographs in
  Physics, Springer-Verlag, Berlin, 1999.
 
- Sasakura N., Super tensor models, super fuzzy spaces and super n-ary
  transformations, Internat. J. Modern Phys. A 26 (2011),
  4203-4216, arXiv:1106.0379.
 
- Sasakura N., Tensor models and 3-ary algebras, arXiv:1104.1463.
 
- Sasakura N., Tensor model for gravity and orientability of manifold,
  Modern Phys. Lett. A 6 (1991), 2613-2623.
 
- Sasakura N., Tensor models and hierarchy of n-ary algebras,
  Internat. J. Modern Phys. A 26 (2011), 3249-3258,
  arXiv:1104.5312.
 
- Stanley R.P., Enumerative combinatorics, Vol. 2, Cambridge Studies in
  Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 2001.
 
- Szabo R.J., Wheater J.F., Curvature matrix models for dynamical triangulations
  and the Itzykson-Di Francesco formula, Nuclear Phys. B
  491 (1997), 689-723, hep-th/9609237.
 
- 't Hooft G., A planardiagramtheoryforstronginteractions, Nuclear
  Phys. B 72 (1974), 461-473.
 
- Tanasa A., Generalization of the Bollobás-Riordan polynomial for tensor
  graphs, J. Math. Phys. 52 (2011), 073514, 17 pages,
  arXiv:1012.1798.
 
- Tanasa A., Multi-orientable group field theory, arXiv:1109.0694.
 
 
 | 
 |