|
SIGMA 8 (2012), 023, 25 pages arXiv:1111.6750
https://doi.org/10.3842/SIGMA.2012.023
Classification of Traces and Associated Determinants on Odd-Class Operators in Odd Dimensions
Carolina Neira Jiménez a and Marie Françoise Ouedraogo b
a) Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
b) Départment de Mathématiques, Université de Ouagadougou, 03 BP 7021, Burkina Faso
Received November 30, 2011, in final form April 11, 2012; Published online April 21, 2012
Abstract
To supplement the already known classification of traces on classical pseudodifferential operators, we present a classification of traces on the algebras of odd-class pseudodifferential operators of non-positive order acting on smooth functions on a closed odd-dimensional manifold. By means of the one to one correspondence between continuous traces on Lie algebras and determinants on the associated regular Lie groups, we give a classification of determinants on the group associated to the algebra of odd-class pseudodifferential operators with fixed non-positive order. At the end we discuss two possible ways to extend the definition of a determinant outside a neighborhood of the identity on the Lie group associated to the algebra of odd-class pseudodifferential operators of order zero.
Key words:
pseudodifferential operators; odd-class; trace; determinant; logarithm; regular Lie group.
pdf (513 kb)
tex (31 kb)
References
- Braverman M., Symmetrized trace and symmetrized determinant of odd class
pseudo-differential operators, J. Geom. Phys. 59 (2009),
459-474, math-ph/0702060.
- De la Harpe P., Skandalis G., Déterminant associé à une trace sur une
algébre de Banach, Ann. Inst. Fourier (Grenoble) 34
(1984), 241-260.
- Ducourtioux C., Weighted traces on pseudodifferential operators and associated
determinants, Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand,
2001.
- Fedosov B.V., Golse F., Leichtnam E., Schrohe E., The noncommutative residue
for manifolds with boundary, J. Funct. Anal. 142 (1996),
1-31.
- Grubb G., A resolvent approach to traces and zeta Laurent expansions, in
Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds,
Contemp. Math., Vol. 366, Amer. Math. Soc., Providence, RI, 2005,
67-93, math.AP/0311081.
- Guillemin V., A new proof of Weyl's formula on the asymptotic distribution of
eigenvalues, Adv. Math. 55 (1985), 131-160.
- Guillemin V., Residue traces for certain algebras of Fourier integral
operators, J. Funct. Anal. 115 (1993), 391-417.
- Kontsevich M., Vishik S., Determinants of elliptic pseudodifferential
operators, hep-th/9404046.
- Kriegl A., Michor P.W., The convenient setting of global analysis,
Mathematical Surveys and Monographs, Vol. 53, American Mathematical
Society, Providence, RI, 1997.
- Lesch M., On the noncommutative residue for pseudodifferential operators with
log-polyhomogeneous symbols, Ann. Global Anal. Geom. 17
(1999), 151-187, dg-ga/9708010.
- Lesch M., Pseudodifferential operators and regularized traces, in Motives,
Quantum Field Theory, and Pseudodifferential Operators, Clay Math.
Proc., Vol. 12, Amer. Math. Soc., Providence, RI, 2010, 37-72,
arXiv:0901.1689.
- Lesch M., Neira Jiménez C., Classification of traces and hypertraces on
spaces of classical pseudodifferential operators, arXiv:1011.3238.
- Lescure J.M., Paycha S., Uniqueness of multiplicative determinants on elliptic
pseudodifferential operators, Proc. Lond. Math. Soc. (3) 94
(2007), 772-812.
- Maniccia L., Schrohe E., Seiler J., Uniqueness of the Kontsevich-Vishik
trace, Proc. Amer. Math. Soc. 136 (2008), 747-752,
math.FA/0702250.
- Mickelsson J., Current algebras and groups, Plenum Monographs in Nonlinear
Physics, Plenum Press, New York, 1989.
- Milnor J., Remarks on infinite-dimensional Lie groups, in Relativity, Groups
and Topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984,
1007-1057.
- Neira Jiménez C., Cohomology of classes of symbols and classification of
traces on corresponding classes of operators with non positive order, Ph.D.
thesis, Universität Bonn, 2009, available at
http://hss.ulb.uni-bonn.de/2010/2214/2214.htm.
- Okikiolu K., The Campbell-Hausdorff theorem for elliptic operators and a
related trace formula, Duke Math. J. 79 (1995), 687-722.
- Omori H., Maeda Y., Yoshioka A., Kobayashi O., On regular Fréchet-Lie
groups. IV. Definition and fundamental theorems, Tokyo J. Math.
5 (1982), 365-398.
- Ouedraogo M.F., A symmetrized canonical determinant on odd-class
pseudodifferential operators, in Geometric and Topological Methods for
Quantum Field Theory, Cambridge Univ. Press, Cambridge, 2010, 381-393.
- Ouedraogo M.F., Extension of the canonical trace and associated determinants,
Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand, 2009.
- Paycha S., The noncommutative residue and canonical trace in the light of
Stokes' and continuity properties, arXiv:0706.2552.
- Paycha S., Rosenberg S., Traces and characteristic classes on loop spaces, in
Infinite Dimensional Groups and Manifolds, IRMA Lect. Math. Theor.
Phys., Vol. 5, de Gruyter, Berlin, 2004, 185-212.
- Paycha S., Scott S., A Laurent expansion for regularized integrals of
holomorphic symbols, Geom. Funct. Anal. 17 (2007),
491-536, math.AP/0506211.
- Ponge R., Spectral asymmetry, zeta functions, and the noncommutative residue,
Internat. J. Math. 17 (2006), 1065-1090,
math.DG/0310102.
- Ponge R., Traces on pseudodifferential operators and sums of commutators,
J. Anal. Math. 110 (2010), 1-30, arXiv:0707.4265.
- Scott S., The residue determinant, Comm. Partial Differential
Equations 30 (2005), 483-507, math.AP/0406268.
- Seeley R.T., Complex powers of an elliptic operator, in Singular Integrals
(Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math.
Soc., Providence, R.I., 1967, 288-307.
- Shubin M.A., Pseudodifferential operators and spectral theory, 2nd ed.,
Springer-Verlag, Berlin, 2001.
- Simon B., Trace ideals and their applications, London Mathematical
Society Lecture Note Series, Vol. 35, Cambridge University Press, Cambridge,
1979.
- Wodzicki M., Noncommutative residue. I. Fundamentals, in K-Theory,
Arithmetic and Geometry (Moscow, 1984-1986), Lecture Notes in
Math., Vol. 1289, Springer, Berlin, 1987, 320-399.
- Wodzicki M., Spectral asymmetry and noncommutative residue, Thesis, Steklov Institute, Soviet Academy of Sciences, Moscow, 1984.
- Yoshioka A., Maeda Y., Omori H., Kobayashi O., On regular Fréchet-Lie
groups. VII. The group generated by pseudodifferential operators of
negative order, Tokyo J. Math. 7 (1984), 315-336.
|
|