|
SIGMA 8 (2012), 029, 9 pages arXiv:1205.3553
https://doi.org/10.3842/SIGMA.2012.029
Orbit Representations from Linear mod 1 Transformations
Carlos Correia Ramos a, Nuno Martins b and Paulo R. Pinto b
a) Centro de Investigação em Matemática e Aplicações, R. Romão Ramalho, 59, 7000-671 Évora, Portugal
b) Department of Mathematics, CAMGSD, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Received March 14, 2012, in final form May 09, 2012; Published online May 16, 2012
Abstract
We show that every point $x_0\in [0,1]$ carries a representation
of a $C^*$-algebra that encodes the orbit structure of the
linear mod 1 interval map $f_{\beta,\alpha}(x)=\beta x +\alpha$. Such $C^*$-algebra is generated
by partial isometries arising from the subintervals of monotonicity of the underlying map $f_{\beta,\alpha}$.
Then we prove that such representation is irreducible.
Moreover two such of representations are unitarily equivalent
if and only if the points belong to the same generalized orbit,
for every $\alpha\in [0,1[$ and $\beta\geq 1$.
Key words:
interval maps; symbolic dynamics; $C^*$-algebras; representations of algebras.
pdf (361 kb)
tex (29 kb)
References
- Abe M., Kawamura K., Recursive fermion system in Cuntz algebra.
I. Embeddings of fermion algebra into Cuntz algebra, Comm.
Math. Phys. 228 (2002), 85-101, math-ph/0110003.
- Bratteli O., Jorgensen P.E.T., Iterated function systems and permutation
representations of the Cuntz algebra, Mem. Amer. Math. Soc.
139 (1999), no. 663, 89 pages, funct-an/9612002.
- Bratteli O., Jorgensen P.E.T., Ostrovs'ky V., Representation theory and
numerical AF-invariants. The representations and centralizers of certain
states on $\mathcal{O}_d$, Mem. Amer. Math. Soc. 168
(2004), no. 797, 178 pages, math.OA/9907036.
- Carlsen T.M., Silvestrov S., $C^*$-crossed products and shift spaces,
Expo. Math. 25 (2007), 275-307, math.OA/0512488.
- Correia Ramos C., Martins N., Pinto P.R., On $C^*$-algebras from interval maps,
Complex Anal. Oper. Theory, to appear.
- Correia Ramos C., Martins N., Pinto P.R., Orbit representations and circle
maps, in Operator Algebras, Operator Theory and Applications, Oper.
Theory Adv. Appl., Vol. 181, Birkhäuser Verlag, Basel, 2008, 417-427.
- Correia Ramos C., Martins N., Pinto P.R., Sousa Ramos J., Cuntz-Krieger
algebras representations from orbits of interval maps, J. Math. Anal.
Appl. 341 (2008), 825-833.
- Cuntz J., Krieger W., A class of $C^*$-algebras and topological Markov
chains, Invent. Math. 56 (1980), 251-268.
- Daubechies I., Ten lectures on wavelets, CBMS-NSF Regional Conference
Series in Applied Mathematics, Vol. 61, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1992.
- Dutkay D.E., Jorgensen P.E.T., Wavelet constructions in non-linear dynamics,
Electron. Res. Announc. Amer. Math. Soc. 11 (2005), 21-33,
math.DS/0501145.
- Exel R., A new look at the crossed-product of a $C^*$-algebra by an
endomorphism, Ergodic Theory Dynam. Systems 23 (2003),
1733-1750, math.OA/0012084.
- Jorgensen P.E.T., Certain representations of the Cuntz relations, and a
question on wavelets decompositions, in Operator Theory, Operator Algebras,
and Applications, Contemp. Math., Vol. 414, Amer. Math. Soc.,
Providence, RI, 2006, 165-188, math.CA/0405372.
- Marcolli M., Paolucci A.M., Cuntz-Krieger algebras and wavelets on fractals,
Complex Anal. Oper. Theory 5 (2011), 41-81,
arXiv:0908.0596.
- Martins N., Sousa Ramos J., Cuntz-Krieger algebras arising from linear mod
one transformations, in Differential Equations and Dynamical Systems
(Lisbon, 2000), Fields Inst. Commun., Vol. 31, Amer. Math. Soc.,
Providence, RI, 2002, 265-273.
- Matsumoto K., On $C^*$-algebras associated with subshifts,
Internat. J. Math. 8 (1997), 357-374.
- Milnor J., Thurston W., On iterated maps of the interval, in Dynamical Systems
(College Park, MD, 1986-1987), Lecture Notes in Math., Vol. 1342, Springer, Berlin, 1988, 465-563.
- Pedersen G.K., $C^*$-algebras and their automorphism groups,
London Mathematical Society Monographs, Vol. 14, Academic Press
Inc., London, 1979.
|
|