|
SIGMA 8 (2012), 029, 9 pages arXiv:1205.3553
https://doi.org/10.3842/SIGMA.2012.029
Orbit Representations from Linear mod 1 Transformations
Carlos Correia Ramos a, Nuno Martins b and Paulo R. Pinto b
a) Centro de Investigação em Matemática e Aplicações, R. Romão Ramalho, 59, 7000-671 Évora, Portugal
b) Department of Mathematics, CAMGSD, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Received March 14, 2012, in final form May 09, 2012; Published online May 16, 2012
Abstract
We show that every point x0∈[0,1] carries a representation
of a C∗-algebra that encodes the orbit structure of the
linear mod 1 interval map fβ,α(x)=βx+α. Such C∗-algebra is generated
by partial isometries arising from the subintervals of monotonicity of the underlying map fβ,α.
Then we prove that such representation is irreducible.
Moreover two such of representations are unitarily equivalent
if and only if the points belong to the same generalized orbit,
for every α∈[0,1[ and β≥1.
Key words:
interval maps; symbolic dynamics; C∗-algebras; representations of algebras.
pdf (361 kb)
tex (29 kb)
References
- Abe M., Kawamura K., Recursive fermion system in Cuntz algebra.
I. Embeddings of fermion algebra into Cuntz algebra, Comm.
Math. Phys. 228 (2002), 85-101, math-ph/0110003.
- Bratteli O., Jorgensen P.E.T., Iterated function systems and permutation
representations of the Cuntz algebra, Mem. Amer. Math. Soc.
139 (1999), no. 663, 89 pages, funct-an/9612002.
- Bratteli O., Jorgensen P.E.T., Ostrovs'ky V., Representation theory and
numerical AF-invariants. The representations and centralizers of certain
states on Od, Mem. Amer. Math. Soc. 168
(2004), no. 797, 178 pages, math.OA/9907036.
- Carlsen T.M., Silvestrov S., C∗-crossed products and shift spaces,
Expo. Math. 25 (2007), 275-307, math.OA/0512488.
- Correia Ramos C., Martins N., Pinto P.R., On C∗-algebras from interval maps,
Complex Anal. Oper. Theory, to appear.
- Correia Ramos C., Martins N., Pinto P.R., Orbit representations and circle
maps, in Operator Algebras, Operator Theory and Applications, Oper.
Theory Adv. Appl., Vol. 181, Birkhäuser Verlag, Basel, 2008, 417-427.
- Correia Ramos C., Martins N., Pinto P.R., Sousa Ramos J., Cuntz-Krieger
algebras representations from orbits of interval maps, J. Math. Anal.
Appl. 341 (2008), 825-833.
- Cuntz J., Krieger W., A class of C∗-algebras and topological Markov
chains, Invent. Math. 56 (1980), 251-268.
- Daubechies I., Ten lectures on wavelets, CBMS-NSF Regional Conference
Series in Applied Mathematics, Vol. 61, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1992.
- Dutkay D.E., Jorgensen P.E.T., Wavelet constructions in non-linear dynamics,
Electron. Res. Announc. Amer. Math. Soc. 11 (2005), 21-33,
math.DS/0501145.
- Exel R., A new look at the crossed-product of a C∗-algebra by an
endomorphism, Ergodic Theory Dynam. Systems 23 (2003),
1733-1750, math.OA/0012084.
- Jorgensen P.E.T., Certain representations of the Cuntz relations, and a
question on wavelets decompositions, in Operator Theory, Operator Algebras,
and Applications, Contemp. Math., Vol. 414, Amer. Math. Soc.,
Providence, RI, 2006, 165-188, math.CA/0405372.
- Marcolli M., Paolucci A.M., Cuntz-Krieger algebras and wavelets on fractals,
Complex Anal. Oper. Theory 5 (2011), 41-81,
arXiv:0908.0596.
- Martins N., Sousa Ramos J., Cuntz-Krieger algebras arising from linear mod
one transformations, in Differential Equations and Dynamical Systems
(Lisbon, 2000), Fields Inst. Commun., Vol. 31, Amer. Math. Soc.,
Providence, RI, 2002, 265-273.
- Matsumoto K., On C∗-algebras associated with subshifts,
Internat. J. Math. 8 (1997), 357-374.
- Milnor J., Thurston W., On iterated maps of the interval, in Dynamical Systems
(College Park, MD, 1986-1987), Lecture Notes in Math., Vol. 1342, Springer, Berlin, 1988, 465-563.
- Pedersen G.K., C∗-algebras and their automorphism groups,
London Mathematical Society Monographs, Vol. 14, Academic Press
Inc., London, 1979.
|
|