| 
 SIGMA 8 (2012), 030, 20 pages      arXiv:1205.5329     
https://doi.org/10.3842/SIGMA.2012.030 
Contribution to the Special Issue “Symmetries of Differential Equations: Frames, Invariants and Applications” 
Motions of Curves in the Projective Plane Inducing the Kaup-Kupershmidt Hierarchy
Emilio Musso
 Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
 
 
Received February 08, 2012, in final form May 11, 2012; Published online May 24, 2012 
Abstract
 
The equation of a motion of curves in the projective plane is deduced. Local flows are defined in terms of polynomial differential functions. A family of local flows inducing the Kaup-Kupershmidt hierarchy is constructed. The integration of the congruence curves is discussed. Local motions defined by the traveling wave cnoidal solutions of the fifth-order Kaup-Kupershmidt equation are described.
  
 Key words:
local motion of curves; integrable evolution equations; Kaup-Kupershmidt hierarchy; geometric variational problems; projective differential geometry. 
pdf (737 kb)  
tex (271 kb)
 
 
References
 
- Anderson T.C., Marí Beffa G., A completely integrable flow of
  star-shaped curves on the light cone in Lorentzian R4,
  J. Phys. A: Math. Theor. 44 (2011), 445203, 21 pages.
 
- Calini A., Ivey T., Marí-Beffa G., Remarks on KdV-type flows on
  star-shaped curves, Phys. D 238 (2009), 788-797,
  arXiv:0808.3593.
 
- Cartan E., Sur un problème du Calcul des variations en Géométrie
  projective plane, in Oeuvres Complètes, Partie III, Vol. 2, Gauthier
  Villars, Paris, 1955, 1105-1119.
 
- Chou K.S., Qu C., Integrable equations and motions of plane curves, in
  Proceedinds of Fourth International Conference "Symmetry in Nonlinear
  Mathematical Physics" (July 9-15, 2001, Kyiv), Proceedings of
  Institute of Mathematics, Kyiv, Vol. 43, Part 1, Editors A.G. Nikitin, V.M. Boyko, R.O. Popovych, Institute of Mathematics, Kyiv, 2002, 281-290.
 
- Chou K.S., Qu C., Integrable equations arising from motions of plane curves,
  Phys. D 162 (2002), 9-33.
 
- Chou K.S., Qu C., Integrable equations arising from motions of plane
  curves. II, J. Nonlinear Sci. 13 (2003), 487-517.
 
- Chou K.S., Qu C., Integrable motions of space curves in affine geometry,
  Chaos Solitons Fractals 14 (2002), 29-44.
 
- Chou K.S., Qu C., Motions of curves in similarity geometries and
  Burgers-mKdV hierarchies, Chaos Solitons Fractals 19
  (2004), 47-53.
 
- Fels M., Olver P.J., Moving coframes. II. Regularization and theoretical
  foundations, Acta Appl. Math. 55 (1999), 127-208.
 
- Fordy A.P., Gibbons J., Some remarkable nonlinear transformations,
  Phys. Lett. A 75 (1980), 325.
 
- Fuchssteiner B., Oevel W., The bi-Hamiltonian structure of some nonlinear
  fifth- and seventh-order differential equations and recursion formulas for
  their symmetries and conserved covaria, J. Math. Phys. 23
  (1982), 358-363.
 
- Goldstein R.E., Petrich D.M., Solitons, Euler's equation, and vortex patch
  dynamics, Phys. Rev. Lett. 69 (1992), 555-558.
 
- Goldstein R.E., Petrich D.M., The Korteweg-de Vries hierarchy as dynamics
  of closed curves in the plane, Phys. Rev. Lett. 67 (1991),
  3203-3206.
 
- Halphen G.H., Sur les invariants differentiels, Gauthier Villars, Paris, 1878.
 
- Huang R., Singer D.A., A new flow on starlike curves in R3,
  Proc. Amer. Math. Soc. 130 (2002), 2725-2735.
 
- Ivey T.A., Integrable geometric evolution equations for curves, in The
  Geometrical Study of Differential Equations (Washington, DC, 2000),
  Contemp. Math., Vol. 285, Amer. Math. Soc., Providence, RI, 2001,
  71-84.
 
- Kaup D.J., On the inverse scattering problem for cubic eigenvalue problems of
  the class ψxxx+6Qψx+6Rψ=λψ, Stud.
  Appl. Math. 62 (1980), 189-216.
 
- Kudryashov N.A., Two hierarchies of ordinary differential equations and their
  properties, Phys. Lett. A 252 (1999), 173-179.
 
- Langer J., Perline R., Curve motion inducing modified Korteweg-de Vries
  systems, Phys. Lett. A 239 (1998), 36-40.
 
- Lawden D.F., Elliptic functions and applications, Applied Mathematical
  Sciences, Vol. 80, Springer-Verlag, New York, 1989.
 
- Li Y., Qu C., Shu S., Integrable motions of curves in projective geometries,
  J. Geom. Phys. 60 (2010), 972-985.
 
- Marí Beffa G., Poisson brackets associated to the conformal geometry of
  curves, Trans. Amer. Math. Soc. 357 (2005), 2799-2827.
 
- Marí Beffa G., Projective-type differential invariants and geometric
  curve evolutions of KdV-type in flat homogeneous manifolds, Ann.
  Inst. Fourier (Grenoble) 58 (2008), 1295-1335.
 
- Musette M., Verhoeven C., Nonlinear superposition formula for the
  Kaup-Kupershmidt partial differential equation, Phys. D
  144 (2000), 211-220.
 
- Musso E., Congruence curves of the Goldstein-Petrich flows, in Harmonic
  Maps and Differential Geometry, Contemp. Math., Vol. 542, Amer.
  Math. Soc., Providence, RI, 2011, 99-113.
 
- Musso E., Variational problems for plane curves in centro-affine geometry,
  J. Phys. A: Math. Theor. 43 (2010), 305206, 24 pages.
 
- Musso E., Nicolodi L., Hamiltonian flows on null curves, Nonlinearity
  23 (2010), 2117-2129, arXiv:0911.4467.
 
- Musso E., Nicolodi L., Reduction for the projective arclength functional,
  Forum Math. 17 (2005), 569-590.
 
- Nakayama K., Segur H., Wadati M., Integrability and the motion of curves,
  Phys. Rev. Lett. 69 (1992), 2603-2606.
 
- Ovsienko V., Tabachnikov S., Projective differential geometry old and new. From
  the Schwarzian derivative to the cohomology of diffeomorphism groups,
  Cambridge Tracts in Mathematics, Vol. 165, Cambridge University
  Press, Cambridge, 2005.
 
- Parker A., On soliton solutions of the Kaup-Kupershmidt equation.
  I. Direct bilinearisation and solitary wave, Phys. D
  137 (2000), 25-33.
 
- Pinkall U., Hamiltonian flows on the space of star-shaped curves,
  Results Math. 27 (1995), 328-332.
 
- Qu C., Si Y., Liu R., On affine Sawada-Kotera equation, Chaos
  Solitons Fractals 15 (2003), 131-139.
 
- Rogers C., Carillo S., On reciprocal properties of the
  Caudrey-Dodd-Gibbon and Kaup-Kupershmidt hierarchies,
  Phys. Scripta 36 (1987), 865-869.
 
- Thorbergsson G., Umehara M., Sextactic points on a simple closed curve,
  Nagoya Math. J. 167 (2002), 55-94,
  math.DG/0008137.
 
- Umehara M., A simplification of the proof of Bol's conjecture on sextactic
  points, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011),
  10-12.
 
- Verhoeven C., Musette M., Extended soliton solutions for the
  Kaup-Kupershmidt equation, J. Phys. A: Math. Gen. 34
  (2001), 2515-2523.
 
- Wazwaz A.M., Abundant solitons solutions for several forms of the fifth-order
  KdV equation by using the tanh method, Appl. Math. Comput.
  182 (2006), 283-300.
 
- Weiss J., On classes of integrable systems and the Painlevé property,
  J. Math. Phys. 25 (1984), 13-24.
 
- Wilczynski E.J., Projective differential geometry of curves and ruled surfaces,
  B.G. Teubner, Leipzig, 1906.
 
- Zait R.A., Bäcklund transformations, cnoidal wave and travelling wave
  solutions of the SK and KK equations, Chaos Solitons Fractals
  15 (2003), 673-678.
 
 
 | 
 |