| 
 SIGMA 8 (2012), 031, 9 pages      arXiv:1204.1801     
https://doi.org/10.3842/SIGMA.2012.031 
Contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions” 
Superintegrable Stäckel Systems on the Plane: Elliptic and Parabolic Coordinates
Andrey V. Tsiganov
 St. Petersburg State University, St. Petersburg, Russia
 
 
Received April 10, 2012, in final form May 21, 2012; Published online May 25, 2012 
Abstract
 
Recently we proposed a generic construction of the additional integrals of motion for  the Stäckel  systems applying  addition theorems to  the angle variables.  In this note we show some trivial examples associated with angle variables for elliptic and parabolic coordinate systems on the plane.
  
 Key words:
integrability; superintegrability; separation of variables; Abel equations; addition theorems. 
pdf (273 kb)  
tex (12 kb)
 
 
References
 
- Baker H.F., Abel's theorem and the allied theory including the theory of the
  theta functions, Cambridge University Press, Cambridge, 1897.
 
- Borisov A.V., Kilin A.A., Mamaev I.S., Superintegrable system on a sphere with
  the integral of higher degree, Regul. Chaotic Dyn. 14
  (2009), 615-620.
 
- Euler L., Institutiones Calculi integralis, Acta Petropolitana, 1761.
 
- Grigoryev Y.A., Khudobakhshov V.A., Tsiganov A.V., On Euler superintegrable
  systems, J. Phys. A: Math. Theor. 42 (2009), 075202,
  11 pages.
 
- Kalnins E.G., Separation of variables for Riemannian spaces of constant
  curvature, Pitman Monographs and Surveys in Pure and Applied
  Mathematics, Vol. 28, Longman Scientific & Technical, Harlow, 1986.
 
- Kalnins E.G., Miller W., Structure theory for extended Kepler-Coulomb 3D
  classical superintegrable systems, arXiv:1202.0197.
 
- Maciejewski A.J., Przybylska M., Tsiganov A.V., On algebraic construction of
  certain integrable and super-integrable systems, Phys. D
  240 (2011), 1426-1448, arXiv:1011.3249.
 
- Popperi I., Post S., Winternitz P., Third-order superintegrable systems
  separable in parabolic coordinates, arXiv:1204.0700.
 
- Post S., Winternitz P., A nonseparable quantum superintegrable system in 2D
  real Euclidean space, J. Phys. A: Math. Theor. 44 (2011),
  162001, 8 pages, arXiv:1101.5405.
 
- Richelot F., Ueber die Integration eines Merkwürdigen Systems von
  Differentialgleichungen, J. Reine Angew. Math. 23 (1842),
  354-369.
 
- Stäckel P., Über die Integration der Hamilton-Jacobischen Differential
  Gleichung Mittelst Separation der Variabeln, Habilitationsschrift, Halle,
  1891.
 
- Tsiganov A.V., Addition theorems and the Drach superintegrable systems,
  J. Phys. A: Math. Theor. 41 (2008), 335204, 16 pages,
  arXiv:0805.3443.
 
- Tsiganov A.V., Leonard Euler: addition theorems and superintegrable systems,
  Regul. Chaotic Dyn. 14 (2009), 389-406,
  arXiv:0810.1100.
 
- Tsiganov A.V., On maximally superintegrable systems, Regul. Chaotic
  Dyn. 13 (2008), 178-190, arXiv:0711.2225.
 
- Tsiganov A.V., On the superintegrable Richelot systems, J. Phys. A:
  Math. Theor. 43 (2010), 055201, 14 pages, arXiv:0909.2923.
 
 
 | 
 |