| 
 SIGMA 8 (2012), 032, 15 pages      arXiv:1201.4247     
https://doi.org/10.3842/SIGMA.2012.032 
Contribution to the Special Issue “Loop Quantum Gravity and Cosmology” 
On the Relations between Gravity and BF Theories
Laurent Freidel a and Simone Speziale b
 a) Perimeter Institute, 31 Caroline St N, Waterloo ON,  N2L 2Y5, Canada
 b) Centre de Physique Théorique, CNRS-UMR 7332, Luminy Case 907, 13288 Marseille, France
 
 
Received January 23, 2012, in final form May 18, 2012; Published online May 26, 2012 
Abstract
 
We review, in the light of recent developments, the existing relations between gravity and topological BF theories at the classical level. We include the Plebanski action in both self-dual and non-chiral formulations, their generalizations, and the MacDowell-Mansouri action.
  
 Key words:
Plebanski action; MacDowell-Mansouri action; BF gravity; TQFT; modified theories of gravity. 
pdf (434 kb)  
tex (33 kb)
 
 
References
 
- Alexandrov S., Choice of connection in loop quantum gravity, Phys.
  Rev. D 65 (2002), 024011, 7 pages, gr-qc/0107071.
 
- Alexandrov S., The Immirzi parameter and fermions with non-minimal coupling,
  Classical Quantum Gravity 25 (2008), 145012, 4 pages,
  arXiv:0802.1221.
 
- Alexandrov S., Buffenoir E., Roche P., Plebanski theory and covariant canonical
  formulation, Classical Quantum Gravity 24 (2007),
  2809-2824, gr-qc/0612071.
 
- Alexandrov S., Geiller M., Noui K., Spin foams and canonical quantization,
  arXiv:1112.1961.
 
- Alexandrov S., Krasnov K., Hamiltonian analysis of non-chiral Plebanski
  theory and its generalizations, Classical Quantum Gravity
  26 (2009), 055005, 10 pages, arXiv:0809.4763.
 
- Alexandrov S., Livine E.R., SU(2) loop quantum gravity seen from covariant
  theory, Phys. Rev. D 67 (2003), 044009, 15 pages,
  gr-qc/0209105.
 
- Anishetty R., Vytheeswaran A.S., Gauge invariance in second-class constrained
  systems, J. Phys. A: Math. Gen. 26 (1993), 5613-5619.
 
- Ashtekar A., New Hamiltonian formulation of general relativity, Phys.
  Rev. D 36 (1987), 1587-1602.
 
- Ashtekar A., Lewandowski J., Background independent quantum gravity: a status
  report, Classical Quantum Gravity 21 (2004), R53-R152,
  gr-qc/0404018.
 
- Baez J.C., An introduction to spin foam models of BF theory and quantum
  gravity, in Geometry and Quantum Physics (Schladming, 1999),
  Lecture Notes in Phys., Vol. 543, Editors H. Gausterer, H. Grosse,
  Springer, Berlin, 2000, 25-93, gr-qc/9905087.
 
- Baratin A., Oriti D., Group field theory and simplicial gravity path integrals:
  a model for Holst-Plebanski gravity, Phys. Rev. D 85
  (2012), 044003, 15 pages, arXiv:1111.5842.
 
- Barbero G. J.F., Real Ashtekar variables for Lorentzian signature
  space-times, Phys. Rev. D 51 (1995), 5507-5510,
  gr-qc/9410014.
 
- Barrett J.W., Naish-Guzman I., The Ponzano-Regge model, Classical
  Quantum Gravity 26 (2009), 155014, 48 pages, arXiv:0803.3319.
 
- Barros e Sá N., Hamiltonian analysis of general relativity with the
  Immirzi parameter, Internat. J. Modern Phys. D 10 (2001),
  261-272, gr-qc/0006013.
 
- Beke D., Scalar-tensor theories from Λ(φ) Plebanski gravity,
  arXiv:1111.1139.
 
- Beke D., Palmisano G., Speziale S., Pauli-Fierz mass term in modified
  Plebanski gravity, J. High Energy Phys. 2012 (2012), no. 3,
  069, 28 pages, arXiv:1112.4051.
 
- Benedetti D., Speziale S., Perturbative quantum gravity with the Immirzi
  parameter, J. High Energy Phys. 2011 (2011), no. 6, 107,
  31 pages, arXiv:1104.4028.
 
- Benedetti D., Speziale S., Perturbative running of the Immirzi parameter,
  arXiv:1111.0884.
 
- Bengtsson I., The cosmological constants, Phys. Lett. B 254
  (1991), 55-60.
 
- Bengtsson I., 2-form geometry and the 't Hooft-Plebanski action,
  Classical Quantum Gravity 12 (1995), 1581-1590,
  gr-qc/9502010.
 
- Bethke L., Magueijo J., Chirality of tensor perturbations for complex values of
  the Immirzi parameter, arXiv:1108.0816.
 
- Birmingham D., Blau M., Rakowski M., Thompson G., Topological field theory,
  Phys. Rep. 209 (1991), 129-340.
 
- Bodendorfer N., Thiemann T., Thurn A., New variables for classical and quantum
  gravity in all dimensions. I. Hamiltonian analysis, arXiv:1105.3703.
 
- Bodendorfer N., Thiemann T., Thurn A., On the implementation of the canonical
  quantum simplicity constraint, arXiv:1105.3708.
 
- Bonzom V., Smerlak M., Bubble divergences: sorting out topology from cell
  structure, Ann. Henri Poincaré 13 (2012), 185-208,
  arXiv:1103.3961.
 
- Buffenoir E., Henneaux M., Noui K., Roche P., Hamiltonian analysis of
  Plebanski theory, Classical Quantum Gravity 21 (2004),
  5203-5220, gr-qc/0404041.
 
- Capovilla R., Generally covariant gauge theories, Nuclear Phys. B
  373 (1992), 233-246.
 
- Capovilla R., Dell J., Jacobson T., Mason L., Self-dual 2-forms and
  gravity, Classical Quantum Gravity 8 (1991), 41-57.
 
- Capovilla R., Montesinos M., Prieto V.A., Rojas E., BF gravity and the
  Immirzi parameter, Classical Quantum Gravity 18 (2001),
  L49-L52, gr-qc/0102073.
 
- Cattaneo A.S., Cotta-Ramusino P., Fröhlich J., Martellini M., Topological
  BF theories in 3 and 4 dimensions, J. Math. Phys.
  36 (1995), 6137-6160, hep-th/9505027.
 
- Cattaneo A.S., Cotta-Ramusino P., Fucito F., Martellini M., Rinaldi M., Tanzini
  A., Zeni M., Four-dimensional Yang-Mills theory as a deformation of
  topological BF theory, Comm. Math. Phys. 197 (1998),
  571-621, hep-th/9705123.
 
- Cianfrani F., Montani G., Towards loop quantum gravity without the time gauge,
  Phys. Rev. Lett. 102 (2009), 091301, 4 pages,
  arXiv:0811.1916.
 
- Clifton T., Bañados M., Skordis C., The parameterized post-Newtonian
  limit of bimetric theories of gravity, Classical Quantum Gravity
  27 (2010), 235020, 31 pages, arXiv:1006.5619.
 
- Damour T., Kogan I.I., Effective Lagrangians and universality classes of
  nonlinear bigravity, Phys. Rev. D 66 (2002), 104024,
  17 pages, hep-th/0206042.
 
- Date G., Kaul R.K., Sengupta S., Topological interpretation of
  Barbero-Immirzi parameter, Phys. Rev. D 79 (2009),
  044008, 7 pages, arXiv:0811.4496.
 
- De Pietri R., Freidel L., so(4) Plebanski action and relativistic spin-foam
  model, Classical Quantum Gravity 16 (1999), 2187-2196,
  gr-qc/9804071.
 
- Deruelle N., Sasaki M., Sendouda Y., Yamauchi D., Hamiltonian formulation of
  f(Riemann) theories of gravity, Progr. Theoret. Phys. 123
  (2010), 169-185, arXiv:0908.0679.
 
- Deser S., Teitelboim C., Duality transformations of Abelian and non-Abelian
  gauge fields, Phys. Rev. D 13 (1976), 1592-1597.
 
- Dona P., Speziale S., Introductory lectures to loop quantum gravity,
  arXiv:1007.0402.
 
- Dunajski M., Solitons, instantons, and twistors, Oxford Graduate Texts
  in Mathematics, Vol. 19, Oxford University Press, Oxford, 2010.
 
- Dupuis M., Livine E.R., Holomorphic simplicity constraints for 4D spinfoam
  models, Classical Quantum Gravity 28 (2011), 215022,
  32 pages, arXiv:1104.3683.
 
- Durka R., Kowalski-Glikman J., Gravity as a constrained BF theory: Noether
  charges and Immirzi parameter, Phys. Rev. D 83 (2011),
  124011, 6 pages, arXiv:1103.2971.
 
- Engle J., Livine E., Pereira R., Rovelli C., LQG vertex with finite Immirzi
  parameter, Nuclear Phys. B 799 (2008), 136-149,
  arXiv:0711.0146.
 
- Engle J., Pereira R., Rovelli C., Loop-quantum-gravity vertex amplitude,
  Phys. Rev. Lett. 99 (2007), 161301, 4 pages,
  arXiv:0705.2388.
 
- Freidel L., Modified gravity without new degrees of freedom,
  arXiv:0812.3200.
 
- Freidel L., Krasnov K., A new spin foam model for 4D gravity,
  Classical Quantum Gravity 25 (2008), 125018, 36 pages,
  arXiv:0708.1595.
 
- Freidel L., Krasnov K., Puzio R., BF description of higher-dimensional gravity
  theories, Adv. Theor. Math. Phys. 3 (1999), 1289-1324,
  hep-th/9901069.
 
- Freidel L., Louapre D., Diffeomorphisms and spin foam models, Nuclear
  Phys. B 662 (2003), 279-298, gr-qc/0212001.
 
- Freidel L., Minic D., Takeuchi T., Quantum gravity, torsion, parity violation,
  and all that, Phys. Rev. D 72 (2005), 104002, 6 pages,
  hep-th/0507253.
 
- Freidel L., Starodubtsev A., Quantum gravity in terms of topological
  observables, hep-th/0501191.
 
- Geiller M., Lachieze-Rey M., Noui K., A new look at Lorentz-covariant loop
  quantum gravity, Phys. Rev. D 84 (2011), 044002, 19 pages,
  arXiv:1105.4194.
 
- Halpern M.B., Field-strength and dual variable formulations of gauge theory,
  Phys. Rev. D 19 (1979), 517-530.
 
- Henneaux M., Teitelboim C., Quantization of gauge systems, Princeton University
  Press, Princeton, NJ, 1992.
 
- Holst S., Barbero's Hamiltonian derived from a generalized
  Hilbert-Palatini action, Phys. Rev. D 53 (1996),
  5966-5969, gr-qc/9511026.
 
- Immirzi G., Real and complex connections for canonical gravity,
  Classical Quantum Gravity 14 (1997), L177-L181,
  gr-qc/9612030.
 
- Ishibashi A., Speziale S., Spherically symmetric black holes in minimally
  modified self-dual gravity, Classical Quantum Gravity 26
  (2009), 175005, 37 pages, arXiv:0904.3914.
 
- Krasnov K., Deformations of the constraint algebra of Ashtekar's
  Hamiltonian formulation of general relativity, Phys. Rev. Lett.
  100 (2008), 081102, 4 pages, arXiv:0711.0090.
 
- Krasnov K., Effective metric Lagrangians from an underlying theory with two
  propagating degrees of freedom, Phys. Rev. D 81 (2010),
  084026, 40 pages, arXiv:0911.4903.
 
- Krasnov K., Renormalizable non-metric quantum gravity?,
  hep-th/0611182.
 
- Krasnov K., Shtanov Y., Cosmological perturbations in a family of deformations
  of general relativity, J. Cosmol. Astropart. Phys. 2010
  (2010), no. 6, 006, 42 pages, arXiv:1002.1210.
 
- Krasnov K., Shtanov Y., Halos of modified gravity, Internat. J. Modern
  Phys. D 17 (2008), 2555-2562, arXiv:0805.2668.
 
- Lisi A.G., An exceptionally simple theory of everything, arXiv:0711.0770.
 
- Lisi A.G., Smolin L., Speziale S., Unification of gravity, gauge fields and
  Higgs bosons, J. Phys. A: Math. Theor. 43 (2010), 445401,
  10 pages, arXiv:1004.4866.
 
- Liu L., Montesinos M., Perez A., Topological limit of gravity admitting an
  SU(2) connection formulation, Phys. Rev. D 81 (2010),
  064033, 9 pages, arXiv:0906.4524.
 
- Livine E.R., Speziale S., Solving the simplicity constraints for spinfoam
  quantum gravity, Europhys. Lett. 81 (2008), 50004, 6 pages,
  arXiv:0708.1915.
 
- MacDowell S.W., Mansouri F., Unified geometric theory of gravity and
  supergravity, Phys. Rev. Lett. 38 (1977), 739-742.
 
- Mercuri S., Fermions in the Ashtekar-Barbero connection formalism for
  arbitrary values of the Immirzi parameter, Phys. Rev. D
  73 (2006), 084016, 14 pages, gr-qc/0601013.
 
- Mielke E.W., Spontaneously broken topological SL(5,R) gauge
  theory with standard gravity emerging, Phys. Rev. D 83
  (2011), 044004, 9 pages.
 
- Mitra P., Rajaraman R., Gauge-invariant reformulation of theories with
  second-class constraints, Ann. Physics 203 (1990),
  157-172.
 
- Montesinos M., Alternative symplectic structures for SO(3,1) and SO(4)
  four-dimensional BF theories, Classical Quantum Gravity 23
  (2006), 2267-2278, gr-qc/0603076.
 
- Montesinos M., Velázquez M., BF gravity with Immirzi parameter and
  cosmological constant, Phys. Rev. D 81 (2010), 044033,
  4 pages, arXiv:1002.3836.
 
- Peldán P., Actions for gravity, with generalizations: a review,
  Classical Quantum Gravity 11 (1994), 1087-1132,
  gr-qc/9305011.
 
- Percacci R., Gravity from a particle physicists' perspective, PoS Proc.
  Sci.  (2009), PoS(ISFTG2009), 011, 30 pages, arXiv:0910.5167.
 
- Perez A., Spin foam quantization of SO(4) Pleba\'nski's action, Adv.
  Theor. Math. Phys. 5 (2001), 947-968, gr-qc/0203058.
 
- Perez A., The spin foam approach to quantum gravity, Living Rev.
  Relativ., to appear, arXiv:1205.2019.
 
- Perez A., Rovelli C., Physical effects of the Immirzi parameter in loop
  quantum gravity, Phys. Rev. D 73 (2006), 044013, 3 pages,
  gr-qc/0505081.
 
- Plebanski J.F., On the separation of Einsteinian substructures, J. Math. Phys. 18 (1977), 2511-2520.
 
- Randono A., de Sitter spaces: topological ramifications of gravity as a gauge
  theory, Classical Quantum Gravity 27 (2010), 105008,
  18 pages, arXiv:0909.5435.
 
- Reisenberger M.P., A left-handed simplicial action for Euclidean general
  relativity, Classical Quantum Gravity 14 (1997),
  1753-1770, gr-qc/9609002.
 
- Reisenberger M.P., Classical Euclidean general relativity from "left-handed
  area = right-handed area", Classical Quantum Gravity 16
  (1999), 1357-1371, gr-qc/9804061.
 
- Reisenberger M.P., New constraints for canonical general relativity,
  Nuclear Phys. B 457 (1995), 643-687,
  gr-qc/9505044.
 
- Rivasseau V., Towards renormalizing group field theory, PoS Proc. Sci.
   (2010), PoS(CNCFG2010), 004, 21 pages, arXiv:1103.1900.
 
- Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics,
  Cambridge University Press, Cambridge, 2004.
 
- Rovelli C., Speziale S., On the expansion of a quantum field theory around a
  topological sector, Gen. Relativity Gravitation 39 (2007),
  167-178, gr-qc/0508106.
 
- Smolin L., Plebanski action extended to a unification of gravity and
  Yang-Mills theory, Phys. Rev. D 80 (2009), 124017,
  6 pages, arXiv:0712.0977.
 
- Smolin L., Speziale S., Note on the Plebanski action with the cosmological
  constant and an Immirzi parameter, Phys. Rev. D 81
  (2010), 024032, 6 pages, arXiv:0908.3388.
 
- Speziale S., Bimetric theory of gravity from the nonchiral Plebanski action,
 Phys. Rev. D 82 (2010), 064003, 17 pages,
  arXiv:1003.4701.
 
- Stelle K.S., Classical gravity with higher derivatives, Gen. Relativity
  Gravitation 9 (1978), 353-371.
 
- Stelle K.S., West P.C., de Sitter gauge invariance and the geometry of the
  Einstein-Cartan theory, J. Phys. A: Math. Gen. 12
  (1979), L205-L210.
 
- 't Hooft G., A chiral alternative to the vierbein field in general relativity,
  Nuclear Phys. B 357 (1991), 211-221.
 
- Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs
  on Mathematical Physics, Cambridge University Press, Cambridge, 2007,
  gr-qc/0110034.
 
- Townsend P.K., Small-scale structure of spacetime as the origin of the
  gravitational constant, Phys. Rev. D 15 (1977), 2795-2801.
 
- Tseytlin A.A., Poincaré and de Sitter gauge theories of gravity with
  propagating torsion, Phys. Rev. D 26 (1982), 3327-3341.
 
- Urbantke H., On integrability properties of SU(2) Yang-Mills
  fields. I. Infinitesimal part, J. Math. Phys. 25
  (1984), 2321-2324.
 
- Wieland W.M., Complex Ashtekar variables and reality conditions for Holst's
  action, Ann. Henri Poincaré 13 (2012), 425-448,
  arXiv:1012.1738.
 
- Wilczek F., Riemann-Einstein structure from volume and gauge symmetry,
  Phys. Rev. Lett. 80 (1998), 4851-4854,
  hep-th/9801184.
 
- Wise D.K., MacDowell-Mansouri gravity and Cartan geometry,
  Classical Quantum Gravity 27 (2010), 155010, 26 pages,
  gr-qc/0611154.
 
- Witten E., 2+1-dimensional gravity as an exactly soluble system,
  Nuclear Phys. B 311 (1988), 46-78.
 
- Zapata J.A., Topological lattice gravity using self-dual variables,
  Classical Quantum Gravity 13 (1996), 2617-2634,
  gr-qc/9603030.
 
 
 | 
 |