|
SIGMA 8 (2012), 032, 15 pages arXiv:1201.4247
https://doi.org/10.3842/SIGMA.2012.032
Contribution to the Special Issue “Loop Quantum Gravity and Cosmology”
On the Relations between Gravity and BF Theories
Laurent Freidel a and Simone Speziale b
a) Perimeter Institute, 31 Caroline St N, Waterloo ON, N2L 2Y5, Canada
b) Centre de Physique Théorique, CNRS-UMR 7332, Luminy Case 907, 13288 Marseille, France
Received January 23, 2012, in final form May 18, 2012; Published online May 26, 2012
Abstract
We review, in the light of recent developments, the existing relations between gravity and topological BF theories at the classical level. We include the Plebanski action in both self-dual and non-chiral formulations, their generalizations, and the MacDowell-Mansouri action.
Key words:
Plebanski action; MacDowell-Mansouri action; BF gravity; TQFT; modified theories of gravity.
pdf (434 kb)
tex (33 kb)
References
- Alexandrov S., Choice of connection in loop quantum gravity, Phys.
Rev. D 65 (2002), 024011, 7 pages, gr-qc/0107071.
- Alexandrov S., The Immirzi parameter and fermions with non-minimal coupling,
Classical Quantum Gravity 25 (2008), 145012, 4 pages,
arXiv:0802.1221.
- Alexandrov S., Buffenoir E., Roche P., Plebanski theory and covariant canonical
formulation, Classical Quantum Gravity 24 (2007),
2809-2824, gr-qc/0612071.
- Alexandrov S., Geiller M., Noui K., Spin foams and canonical quantization,
arXiv:1112.1961.
- Alexandrov S., Krasnov K., Hamiltonian analysis of non-chiral Plebanski
theory and its generalizations, Classical Quantum Gravity
26 (2009), 055005, 10 pages, arXiv:0809.4763.
- Alexandrov S., Livine E.R., SU(2) loop quantum gravity seen from covariant
theory, Phys. Rev. D 67 (2003), 044009, 15 pages,
gr-qc/0209105.
- Anishetty R., Vytheeswaran A.S., Gauge invariance in second-class constrained
systems, J. Phys. A: Math. Gen. 26 (1993), 5613-5619.
- Ashtekar A., New Hamiltonian formulation of general relativity, Phys.
Rev. D 36 (1987), 1587-1602.
- Ashtekar A., Lewandowski J., Background independent quantum gravity: a status
report, Classical Quantum Gravity 21 (2004), R53-R152,
gr-qc/0404018.
- Baez J.C., An introduction to spin foam models of BF theory and quantum
gravity, in Geometry and Quantum Physics (Schladming, 1999),
Lecture Notes in Phys., Vol. 543, Editors H. Gausterer, H. Grosse,
Springer, Berlin, 2000, 25-93, gr-qc/9905087.
- Baratin A., Oriti D., Group field theory and simplicial gravity path integrals:
a model for Holst-Plebanski gravity, Phys. Rev. D 85
(2012), 044003, 15 pages, arXiv:1111.5842.
- Barbero G. J.F., Real Ashtekar variables for Lorentzian signature
space-times, Phys. Rev. D 51 (1995), 5507-5510,
gr-qc/9410014.
- Barrett J.W., Naish-Guzman I., The Ponzano-Regge model, Classical
Quantum Gravity 26 (2009), 155014, 48 pages, arXiv:0803.3319.
- Barros e Sá N., Hamiltonian analysis of general relativity with the
Immirzi parameter, Internat. J. Modern Phys. D 10 (2001),
261-272, gr-qc/0006013.
- Beke D., Scalar-tensor theories from Λ(φ) Plebanski gravity,
arXiv:1111.1139.
- Beke D., Palmisano G., Speziale S., Pauli-Fierz mass term in modified
Plebanski gravity, J. High Energy Phys. 2012 (2012), no. 3,
069, 28 pages, arXiv:1112.4051.
- Benedetti D., Speziale S., Perturbative quantum gravity with the Immirzi
parameter, J. High Energy Phys. 2011 (2011), no. 6, 107,
31 pages, arXiv:1104.4028.
- Benedetti D., Speziale S., Perturbative running of the Immirzi parameter,
arXiv:1111.0884.
- Bengtsson I., The cosmological constants, Phys. Lett. B 254
(1991), 55-60.
- Bengtsson I., 2-form geometry and the 't Hooft-Plebanski action,
Classical Quantum Gravity 12 (1995), 1581-1590,
gr-qc/9502010.
- Bethke L., Magueijo J., Chirality of tensor perturbations for complex values of
the Immirzi parameter, arXiv:1108.0816.
- Birmingham D., Blau M., Rakowski M., Thompson G., Topological field theory,
Phys. Rep. 209 (1991), 129-340.
- Bodendorfer N., Thiemann T., Thurn A., New variables for classical and quantum
gravity in all dimensions. I. Hamiltonian analysis, arXiv:1105.3703.
- Bodendorfer N., Thiemann T., Thurn A., On the implementation of the canonical
quantum simplicity constraint, arXiv:1105.3708.
- Bonzom V., Smerlak M., Bubble divergences: sorting out topology from cell
structure, Ann. Henri Poincaré 13 (2012), 185-208,
arXiv:1103.3961.
- Buffenoir E., Henneaux M., Noui K., Roche P., Hamiltonian analysis of
Plebanski theory, Classical Quantum Gravity 21 (2004),
5203-5220, gr-qc/0404041.
- Capovilla R., Generally covariant gauge theories, Nuclear Phys. B
373 (1992), 233-246.
- Capovilla R., Dell J., Jacobson T., Mason L., Self-dual 2-forms and
gravity, Classical Quantum Gravity 8 (1991), 41-57.
- Capovilla R., Montesinos M., Prieto V.A., Rojas E., BF gravity and the
Immirzi parameter, Classical Quantum Gravity 18 (2001),
L49-L52, gr-qc/0102073.
- Cattaneo A.S., Cotta-Ramusino P., Fröhlich J., Martellini M., Topological
BF theories in 3 and 4 dimensions, J. Math. Phys.
36 (1995), 6137-6160, hep-th/9505027.
- Cattaneo A.S., Cotta-Ramusino P., Fucito F., Martellini M., Rinaldi M., Tanzini
A., Zeni M., Four-dimensional Yang-Mills theory as a deformation of
topological BF theory, Comm. Math. Phys. 197 (1998),
571-621, hep-th/9705123.
- Cianfrani F., Montani G., Towards loop quantum gravity without the time gauge,
Phys. Rev. Lett. 102 (2009), 091301, 4 pages,
arXiv:0811.1916.
- Clifton T., Bañados M., Skordis C., The parameterized post-Newtonian
limit of bimetric theories of gravity, Classical Quantum Gravity
27 (2010), 235020, 31 pages, arXiv:1006.5619.
- Damour T., Kogan I.I., Effective Lagrangians and universality classes of
nonlinear bigravity, Phys. Rev. D 66 (2002), 104024,
17 pages, hep-th/0206042.
- Date G., Kaul R.K., Sengupta S., Topological interpretation of
Barbero-Immirzi parameter, Phys. Rev. D 79 (2009),
044008, 7 pages, arXiv:0811.4496.
- De Pietri R., Freidel L., so(4) Plebanski action and relativistic spin-foam
model, Classical Quantum Gravity 16 (1999), 2187-2196,
gr-qc/9804071.
- Deruelle N., Sasaki M., Sendouda Y., Yamauchi D., Hamiltonian formulation of
f(Riemann) theories of gravity, Progr. Theoret. Phys. 123
(2010), 169-185, arXiv:0908.0679.
- Deser S., Teitelboim C., Duality transformations of Abelian and non-Abelian
gauge fields, Phys. Rev. D 13 (1976), 1592-1597.
- Dona P., Speziale S., Introductory lectures to loop quantum gravity,
arXiv:1007.0402.
- Dunajski M., Solitons, instantons, and twistors, Oxford Graduate Texts
in Mathematics, Vol. 19, Oxford University Press, Oxford, 2010.
- Dupuis M., Livine E.R., Holomorphic simplicity constraints for 4D spinfoam
models, Classical Quantum Gravity 28 (2011), 215022,
32 pages, arXiv:1104.3683.
- Durka R., Kowalski-Glikman J., Gravity as a constrained BF theory: Noether
charges and Immirzi parameter, Phys. Rev. D 83 (2011),
124011, 6 pages, arXiv:1103.2971.
- Engle J., Livine E., Pereira R., Rovelli C., LQG vertex with finite Immirzi
parameter, Nuclear Phys. B 799 (2008), 136-149,
arXiv:0711.0146.
- Engle J., Pereira R., Rovelli C., Loop-quantum-gravity vertex amplitude,
Phys. Rev. Lett. 99 (2007), 161301, 4 pages,
arXiv:0705.2388.
- Freidel L., Modified gravity without new degrees of freedom,
arXiv:0812.3200.
- Freidel L., Krasnov K., A new spin foam model for 4D gravity,
Classical Quantum Gravity 25 (2008), 125018, 36 pages,
arXiv:0708.1595.
- Freidel L., Krasnov K., Puzio R., BF description of higher-dimensional gravity
theories, Adv. Theor. Math. Phys. 3 (1999), 1289-1324,
hep-th/9901069.
- Freidel L., Louapre D., Diffeomorphisms and spin foam models, Nuclear
Phys. B 662 (2003), 279-298, gr-qc/0212001.
- Freidel L., Minic D., Takeuchi T., Quantum gravity, torsion, parity violation,
and all that, Phys. Rev. D 72 (2005), 104002, 6 pages,
hep-th/0507253.
- Freidel L., Starodubtsev A., Quantum gravity in terms of topological
observables, hep-th/0501191.
- Geiller M., Lachieze-Rey M., Noui K., A new look at Lorentz-covariant loop
quantum gravity, Phys. Rev. D 84 (2011), 044002, 19 pages,
arXiv:1105.4194.
- Halpern M.B., Field-strength and dual variable formulations of gauge theory,
Phys. Rev. D 19 (1979), 517-530.
- Henneaux M., Teitelboim C., Quantization of gauge systems, Princeton University
Press, Princeton, NJ, 1992.
- Holst S., Barbero's Hamiltonian derived from a generalized
Hilbert-Palatini action, Phys. Rev. D 53 (1996),
5966-5969, gr-qc/9511026.
- Immirzi G., Real and complex connections for canonical gravity,
Classical Quantum Gravity 14 (1997), L177-L181,
gr-qc/9612030.
- Ishibashi A., Speziale S., Spherically symmetric black holes in minimally
modified self-dual gravity, Classical Quantum Gravity 26
(2009), 175005, 37 pages, arXiv:0904.3914.
- Krasnov K., Deformations of the constraint algebra of Ashtekar's
Hamiltonian formulation of general relativity, Phys. Rev. Lett.
100 (2008), 081102, 4 pages, arXiv:0711.0090.
- Krasnov K., Effective metric Lagrangians from an underlying theory with two
propagating degrees of freedom, Phys. Rev. D 81 (2010),
084026, 40 pages, arXiv:0911.4903.
- Krasnov K., Renormalizable non-metric quantum gravity?,
hep-th/0611182.
- Krasnov K., Shtanov Y., Cosmological perturbations in a family of deformations
of general relativity, J. Cosmol. Astropart. Phys. 2010
(2010), no. 6, 006, 42 pages, arXiv:1002.1210.
- Krasnov K., Shtanov Y., Halos of modified gravity, Internat. J. Modern
Phys. D 17 (2008), 2555-2562, arXiv:0805.2668.
- Lisi A.G., An exceptionally simple theory of everything, arXiv:0711.0770.
- Lisi A.G., Smolin L., Speziale S., Unification of gravity, gauge fields and
Higgs bosons, J. Phys. A: Math. Theor. 43 (2010), 445401,
10 pages, arXiv:1004.4866.
- Liu L., Montesinos M., Perez A., Topological limit of gravity admitting an
SU(2) connection formulation, Phys. Rev. D 81 (2010),
064033, 9 pages, arXiv:0906.4524.
- Livine E.R., Speziale S., Solving the simplicity constraints for spinfoam
quantum gravity, Europhys. Lett. 81 (2008), 50004, 6 pages,
arXiv:0708.1915.
- MacDowell S.W., Mansouri F., Unified geometric theory of gravity and
supergravity, Phys. Rev. Lett. 38 (1977), 739-742.
- Mercuri S., Fermions in the Ashtekar-Barbero connection formalism for
arbitrary values of the Immirzi parameter, Phys. Rev. D
73 (2006), 084016, 14 pages, gr-qc/0601013.
- Mielke E.W., Spontaneously broken topological SL(5,R) gauge
theory with standard gravity emerging, Phys. Rev. D 83
(2011), 044004, 9 pages.
- Mitra P., Rajaraman R., Gauge-invariant reformulation of theories with
second-class constraints, Ann. Physics 203 (1990),
157-172.
- Montesinos M., Alternative symplectic structures for SO(3,1) and SO(4)
four-dimensional BF theories, Classical Quantum Gravity 23
(2006), 2267-2278, gr-qc/0603076.
- Montesinos M., Velázquez M., BF gravity with Immirzi parameter and
cosmological constant, Phys. Rev. D 81 (2010), 044033,
4 pages, arXiv:1002.3836.
- Peldán P., Actions for gravity, with generalizations: a review,
Classical Quantum Gravity 11 (1994), 1087-1132,
gr-qc/9305011.
- Percacci R., Gravity from a particle physicists' perspective, PoS Proc.
Sci. (2009), PoS(ISFTG2009), 011, 30 pages, arXiv:0910.5167.
- Perez A., Spin foam quantization of SO(4) Pleba\'nski's action, Adv.
Theor. Math. Phys. 5 (2001), 947-968, gr-qc/0203058.
- Perez A., The spin foam approach to quantum gravity, Living Rev.
Relativ., to appear, arXiv:1205.2019.
- Perez A., Rovelli C., Physical effects of the Immirzi parameter in loop
quantum gravity, Phys. Rev. D 73 (2006), 044013, 3 pages,
gr-qc/0505081.
- Plebanski J.F., On the separation of Einsteinian substructures, J. Math. Phys. 18 (1977), 2511-2520.
- Randono A., de Sitter spaces: topological ramifications of gravity as a gauge
theory, Classical Quantum Gravity 27 (2010), 105008,
18 pages, arXiv:0909.5435.
- Reisenberger M.P., A left-handed simplicial action for Euclidean general
relativity, Classical Quantum Gravity 14 (1997),
1753-1770, gr-qc/9609002.
- Reisenberger M.P., Classical Euclidean general relativity from "left-handed
area = right-handed area", Classical Quantum Gravity 16
(1999), 1357-1371, gr-qc/9804061.
- Reisenberger M.P., New constraints for canonical general relativity,
Nuclear Phys. B 457 (1995), 643-687,
gr-qc/9505044.
- Rivasseau V., Towards renormalizing group field theory, PoS Proc. Sci.
(2010), PoS(CNCFG2010), 004, 21 pages, arXiv:1103.1900.
- Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics,
Cambridge University Press, Cambridge, 2004.
- Rovelli C., Speziale S., On the expansion of a quantum field theory around a
topological sector, Gen. Relativity Gravitation 39 (2007),
167-178, gr-qc/0508106.
- Smolin L., Plebanski action extended to a unification of gravity and
Yang-Mills theory, Phys. Rev. D 80 (2009), 124017,
6 pages, arXiv:0712.0977.
- Smolin L., Speziale S., Note on the Plebanski action with the cosmological
constant and an Immirzi parameter, Phys. Rev. D 81
(2010), 024032, 6 pages, arXiv:0908.3388.
- Speziale S., Bimetric theory of gravity from the nonchiral Plebanski action,
Phys. Rev. D 82 (2010), 064003, 17 pages,
arXiv:1003.4701.
- Stelle K.S., Classical gravity with higher derivatives, Gen. Relativity
Gravitation 9 (1978), 353-371.
- Stelle K.S., West P.C., de Sitter gauge invariance and the geometry of the
Einstein-Cartan theory, J. Phys. A: Math. Gen. 12
(1979), L205-L210.
- 't Hooft G., A chiral alternative to the vierbein field in general relativity,
Nuclear Phys. B 357 (1991), 211-221.
- Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs
on Mathematical Physics, Cambridge University Press, Cambridge, 2007,
gr-qc/0110034.
- Townsend P.K., Small-scale structure of spacetime as the origin of the
gravitational constant, Phys. Rev. D 15 (1977), 2795-2801.
- Tseytlin A.A., Poincaré and de Sitter gauge theories of gravity with
propagating torsion, Phys. Rev. D 26 (1982), 3327-3341.
- Urbantke H., On integrability properties of SU(2) Yang-Mills
fields. I. Infinitesimal part, J. Math. Phys. 25
(1984), 2321-2324.
- Wieland W.M., Complex Ashtekar variables and reality conditions for Holst's
action, Ann. Henri Poincaré 13 (2012), 425-448,
arXiv:1012.1738.
- Wilczek F., Riemann-Einstein structure from volume and gauge symmetry,
Phys. Rev. Lett. 80 (1998), 4851-4854,
hep-th/9801184.
- Wise D.K., MacDowell-Mansouri gravity and Cartan geometry,
Classical Quantum Gravity 27 (2010), 155010, 26 pages,
gr-qc/0611154.
- Witten E., 2+1-dimensional gravity as an exactly soluble system,
Nuclear Phys. B 311 (1988), 46-78.
- Zapata J.A., Topological lattice gravity using self-dual variables,
Classical Quantum Gravity 13 (1996), 2617-2634,
gr-qc/9603030.
|
|