Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 8 (2012), 033, 13 pages      arXiv:1206.1123      https://doi.org/10.3842/SIGMA.2012.033
Contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”

A Top-Down Account of Linear Canonical Transforms

Kurt Bernardo Wolf
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Mor. 62210, México

Received April 24, 2012, in final form June 01, 2012; Published online June 06, 2012

Abstract
We contend that what are called Linear Canonical Transforms (LCTs) should be seen as a part of the theory of unitary irreducible representations of the '2+1' Lorentz group. The integral kernel representation found by Collins, Moshinsky and Quesne, and the radial and hyperbolic LCTs introduced thereafter, belong to the discrete and continuous representation series of the Lorentz group in its parabolic subgroup reduction. The reduction by the elliptic and hyperbolic subgroups can also be considered to yield LCTs that act on functions, discrete or continuous in other Hilbert spaces. We gather the summation and integration kernels reported by Basu and Wolf when studiying all discrete, continuous, and mixed representations of the linear group of 2×2 real matrices. We add some comments on why all should be considered canonical.

Key words: linear transforms; canonical transforms; Lie group Sp(2,R).

pdf (437 kb)   tex (25 kb)

References

  1. Atakishiyev N.M., Nagiyev S.M., Vicent L.E., Wolf K.B., Covariant discretization of axis-symmetric linear optical systems, J. Opt. Soc. Amer. A 17 (2000), 2301-2314.
  2. Bargmann V., Irreducible unitary representations of the Lorentz group, Ann. of Math. (2) 48 (1947), 568-640.
  3. Barker L., Candan Ç., Hakioglu T., Kutay M.A., Ozaktas H.M., The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform, J. Phys. A: Math. Gen. 33 (2000), 2209-2222.
  4. Basu D., The Lorentz group in the oscillator realization. I. The group SO(2, 1) and the transformation matrices connecting the SO(2) and SO(1, 1) bases, J. Math. Phys. 19 (1978), 1667-1670.
  5. Basu D., Bhattacharyya T., The Gel'fand realization and the exceptional representations of SL(2,R), J. Math. Phys. 26 (1985), 12-17.
  6. Basu D., Wolf K.B., The unitary irreducible representations of SL(2,R) in all subgroup reductions, J. Math. Phys. 23 (1982), 189-205.
  7. Collins S.A.J., Lens-system diffraction integral written in terms of matrix optics, J. Opt. Soc. Amer. A 60 (1970), 1168-1177.
  8. Gel'fand I.M., Naimark M.A., Unitary representations of the Lorentz group, Izvestiya Akad. Nauk SSSR. Ser. Mat. 11 (1947), 411-504.
  9. Gilmore R., Lie groups, Lie algebras, and some of their applications, John Wiley & Sons, New York, 1974.
  10. Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, sixth ed., Academic Press Inc., San Diego, CA, 2000.
  11. Han D., Kim Y.S., Noz M.E., Wigner rotations and Iwasawa decompositions in polarization optics, Phys. Rev. E 60 (1999), 1036-1041, quant-ph/0408181.
  12. Healy J.J., Sheridan J.T., Fast linear canonical transforms, J. Opt. Soc. Amer. A 27 (2010), 21-30.
  13. Healy J.J., Sheridan J.T., Sampling and discretization of the linear canonical transform, Signal Process. 89 (2009), 641-648.
  14. Mello P.A., Moshinsky M., Nonlinear canonical transformations and their representations in quantum mechanics, J. Math. Phys. 16 (1975), 2017-2028.
  15. Monzón J.J., Sánchez-Soto L.L., Multilayer optics as an analog computer for testing special relativity, Phys. Lett. A 262 (1999), 18-26.
  16. Moshinsky M., Quesne C., Linear canonical transformations and their unitary representations, J. Math. Phys. 12 (1971), 1772-1780.
  17. Moshinsky M., Quesne C., Oscillator systems, in Proceedings of the 15th Solvay Conference in Physics (1970), Gordon and Breach, New York, 1974, 233-257.
  18. Moshinsky M., Seligman T.H., Wolf K.B., Canonical transformations and the radical oscillator and Coulomb problems, J. Math. Phys. 13 (1972), 901-907.
  19. Mukunda N., Aravind P.K., Simon R., Wigner rotations, Bargmann invariants and geometric phases, J. Phys. A: Math. Gen. 36 (2003), 2347-2370.
  20. Mukunda N., Radhakrishnan B., New forms for the representations of the three-dimensional Lorentz group, J. Math. Phys. 14 (1973), 254-258.
  21. Naimark M.A., Linear representations of the Lorentz group, The Macmillan Co., New York, 1964.
  22. Pei S.C., Ding J.J., Closed-form discrete fractional and affine Fourier transforms, IEEE Trans. Signal Process. 48 (2000), 1338-1353.
  23. Quesne C., Moshinsky M., Canonical transformations and matrix elements, J. Math. Phys. 12 (1971), 1780-1783.
  24. Robertson H.P., The uncertainty principle, Phys. Rev. 34 (1929), 163-264.
  25. Wolf K.B., Canonical transforms. I. Complex linear transforms, J. Math. Phys. 15 (1974), 1295-1301.
  26. Wolf K.B., Canonical transforms. II. Complex radial transforms, J. Math. Phys. 15 (1974), 2102-2111.
  27. Wolf K.B., Canonical transforms. IV. Hyperbolic transforms: continuous series of SL(2,R) representations, J. Math. Phys. 21 (1980), 680-688.
  28. Wolf K.B., Geometric optics on phase space, Texts and Monographs in Physics, Springer-Verlag, Berlin, 2004.
  29. Wolf K.B., Integral transforms in science and engineering, Mathematical Concepts and Methods in Science and Engineering, Vol. 11, Plenum Press, New York, 1979.
  30. Wolf K.B., Aceves-de-la Cruz F., Dependence of s-waves on continuous dimension: the quantum oscillator and free systems, Fortschr. Phys. 54 (2006), 1083-1108.
  31. Yonte T., Monzón J.J., Sánchez-Soto L.L., Cariñena J.F., López-Lacasta C., Understanding multilayers from a geometrical viewpoint, J. Opt. Soc. Amer. A 19 (2002), 603-609, physics/0104050.


Previous article  Next article   Contents of Volume 8 (2012)