| 
 SIGMA 8 (2012), 033, 13 pages      arXiv:1206.1123     
https://doi.org/10.3842/SIGMA.2012.033 
Contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions” 
A Top-Down Account of Linear Canonical Transforms
Kurt Bernardo Wolf
 Instituto de Ciencias Físicas,  Universidad Nacional Autónoma de México,
Av. Universidad s/n, Cuernavaca, Mor. 62210, México
 
 
Received April 24, 2012, in final form June 01, 2012; Published online June 06, 2012 
Abstract
 
We contend that what are called Linear Canonical Transforms (LCTs)
should be seen as a part of the theory of unitary irreducible
representations of the '2+1' Lorentz group. The integral kernel
representation found by Collins, Moshinsky and Quesne, and the radial
and hyperbolic LCTs introduced thereafter, belong to the discrete and
continuous representation series of the Lorentz group in its
parabolic subgroup reduction. The reduction by the elliptic and
hyperbolic subgroups can also be considered to yield LCTs that act on
functions, discrete or continuous in other Hilbert spaces. We gather the
summation and integration kernels reported by Basu and Wolf when
studiying all discrete, continuous, and mixed representations of the
linear group of 2×2 real matrices. We add some comments on why
all should be considered canonical.
  
 Key words:
linear transforms; canonical transforms; Lie group Sp(2,R). 
pdf (437 kb)  
tex (25 kb)
 
 
References
 
- Atakishiyev N.M., Nagiyev S.M., Vicent L.E., Wolf K.B., Covariant
  discretization of axis-symmetric linear optical systems, J. Opt. Soc.
  Amer. A 17 (2000), 2301-2314.
 
- Bargmann V., Irreducible unitary representations of the Lorentz group,
  Ann. of Math. (2) 48 (1947), 568-640.
 
- Barker L., Candan Ç., Hakioglu T., Kutay M.A., Ozaktas H.M., The
  discrete harmonic oscillator, Harper's equation, and the discrete
  fractional Fourier transform, J. Phys. A: Math. Gen. 33
  (2000), 2209-2222.
 
- Basu D., The Lorentz group in the oscillator realization. I. The group
SO(2, 1) and the transformation matrices connecting the  SO(2) and SO(1, 1) bases, J. Math. Phys. 19
  (1978), 1667-1670.
 
- Basu D., Bhattacharyya T., The Gel'fand realization and the exceptional
  representations of SL(2,R), J. Math. Phys.
  26 (1985), 12-17.
 
- Basu D., Wolf K.B., The unitary irreducible representations of  SL(2,R) in all subgroup reductions, J. Math. Phys.
  23 (1982), 189-205.
 
- Collins S.A.J., Lens-system diffraction integral written in terms of matrix
  optics, J. Opt. Soc. Amer. A 60 (1970), 1168-1177.
 
- Gel'fand I.M., Naimark M.A., Unitary representations of the Lorentz
  group, Izvestiya Akad. Nauk SSSR. Ser. Mat. 11 (1947),
  411-504.
 
- Gilmore R., Lie groups, Lie algebras, and some of their applications, John
  Wiley & Sons, New York, 1974.
 
- Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, sixth
  ed., Academic Press Inc., San Diego, CA, 2000.
 
- Han D., Kim Y.S., Noz M.E., Wigner rotations and Iwasawa decompositions in
  polarization optics, Phys. Rev. E 60 (1999), 1036-1041,
  quant-ph/0408181.
 
- Healy J.J., Sheridan J.T., Fast linear canonical transforms, J. Opt.
  Soc. Amer. A 27 (2010), 21-30.
 
- Healy J.J., Sheridan J.T., Sampling and discretization of the linear canonical
  transform, Signal Process. 89 (2009), 641-648.
 
- Mello P.A., Moshinsky M., Nonlinear canonical transformations and their
  representations in quantum mechanics, J. Math. Phys. 16
  (1975), 2017-2028.
 
- Monzón J.J., Sánchez-Soto L.L., Multilayer optics as an analog computer for
  testing special relativity, Phys. Lett. A 262 (1999),
  18-26.
 
- Moshinsky M., Quesne C., Linear canonical transformations and their unitary
  representations, J. Math. Phys. 12 (1971), 1772-1780.
 
- Moshinsky M., Quesne C., Oscillator systems, in Proceedings of the 15th Solvay
  Conference in Physics (1970), Gordon and Breach, New York, 1974, 233-257.
 
- Moshinsky M., Seligman T.H., Wolf K.B., Canonical transformations and the
  radical oscillator and Coulomb problems, J. Math. Phys.
  13 (1972), 901-907.
 
- Mukunda N., Aravind P.K., Simon R., Wigner rotations, Bargmann invariants and
  geometric phases, J. Phys. A: Math. Gen. 36 (2003),
  2347-2370.
 
- Mukunda N., Radhakrishnan B., New forms for the representations of the
  three-dimensional Lorentz group, J. Math. Phys. 14
  (1973), 254-258.
 
- Naimark M.A., Linear representations of the Lorentz group, The Macmillan
  Co., New York, 1964.
 
- Pei S.C., Ding J.J., Closed-form discrete fractional and affine Fourier
  transforms, IEEE Trans. Signal Process. 48 (2000),
  1338-1353.
 
- Quesne C., Moshinsky M., Canonical transformations and matrix elements,
  J. Math. Phys. 12 (1971), 1780-1783.
 
- Robertson H.P., The uncertainty principle, Phys. Rev. 34
  (1929), 163-264.
 
- Wolf K.B., Canonical transforms. I. Complex linear transforms,
  J. Math. Phys. 15 (1974), 1295-1301.
 
- Wolf K.B., Canonical transforms. II. Complex radial transforms,
  J. Math. Phys. 15 (1974), 2102-2111.
 
- Wolf K.B., Canonical transforms. IV. Hyperbolic transforms: continuous
  series of SL(2,R) representations, J. Math. Phys.
  21 (1980), 680-688.
 
- Wolf K.B., Geometric optics on phase space, Texts and Monographs in Physics,
  Springer-Verlag, Berlin, 2004.
 
- Wolf K.B., Integral transforms in science and engineering, Mathematical
  Concepts and Methods in Science and Engineering, Vol. 11, Plenum Press, New
  York, 1979.
 
- Wolf K.B., Aceves-de-la Cruz F., Dependence of s-waves on continuous
  dimension: the quantum oscillator and free systems, Fortschr. Phys.
  54 (2006), 1083-1108.
 
- Yonte T., Monzón J.J., Sánchez-Soto L.L., Cariñena J.F.,
  López-Lacasta C., Understanding multilayers from a geometrical viewpoint,
  J. Opt. Soc. Amer. A 19 (2002), 603-609,
  physics/0104050.
 
 
 | 
 |