| 
 SIGMA 8 (2012), 039, 17 pages      arXiv:1204.0254     
https://doi.org/10.3842/SIGMA.2012.039 
Some Remarks on Very-Well-Poised ${}_8\phi_7$ Series
Jasper V. Stokman
 Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
 
 
Received April 05, 2012, in final form June 18, 2012; Published online June 27, 2012 
Abstract
 
Nonpolynomial basic hypergeometric
eigenfunctions of the Askey-Wilson second order difference operator
are known to be expressible as very-well-poised ${}_8\phi_7$ series.
In this paper we use this fact to derive various basic hypergeometric
and theta function identities. We relate most of them
to identities from the existing literature on basic hypergeometric series.
This leads for example to a new derivation of a known
quadratic transformation formula for very-well-poised ${}_8\phi_7$ series.
We also provide a link to
Chalykh's theory on
(rank one, BC type) Baker-Akhiezer functions.
  
 Key words:
very-well-poised basic hypergeometric series; Askey-Wilson functions; quadratic transformation formulas; theta functions. 
pdf (450 kb)  
tex (23 kb)
 
 
References
 
- Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that
  generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54
  (1985), no. 319.
 
- van de Bult F.J., Ruijsenaars' hypergeometric function and the modular double
  of ${\mathcal U}_q(\mathfrak{sl}_2({\mathbb C}))$, Adv. Math.
  204 (2006), 539-571, math.QA/0501405.
 
- van de Bult F.J., Rains E.M., Stokman J.V., Properties of generalized
  univariate hypergeometric functions, Comm. Math. Phys. 275
  (2007), 37-95, math.CA/0607250.
 
- Chalykh O.A., Macdonald polynomials and algebraic integrability, Adv.
  Math. 166 (2002), 193-259, math.QA/0212313.
 
- Chalykh O.A., Etingof P., Orthogonality relations and Cherednik identities for
  multivariable Baker-Akhiezer functions, arXiv:1111.0515.
 
- Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of
  Mathematics and its Applications, Vol. 96, 2nd ed., Cambridge University
  Press, Cambridge, 2004.
 
- Gupta D.P., Masson D.R., Contiguous relations, continued fractions and
  orthogonality, Trans. Amer. Math. Soc. 350 (1998),
  769-808, math.CA/9511218.
 
- Haine L., Iliev P., Askey-Wilson type functions with bound states,
  Ramanujan J. 11 (2006), 285-329, math.QA/0203136.
 
- Ismail M.E.H., Rahman M., The associated Askey-Wilson polynomials,
  Trans. Amer. Math. Soc. 328 (1991), 201-237.
 
- Koelink E., Stokman J.V., The Askey-Wilson function transform,
  Int. Math. Res. Not. (2001), no. 22, 1203-1227, math.CA/0004053.
 
- Koelink E., Stokman J.V., Fourier transforms on the quantum ${\rm SU}(1,1)$
  group, Publ. Res. Inst. Math. Sci. 37 (2001), 621-715,
  math.QA/9911163.
 
- Koornwinder T., Comment on the paper "Macdonald polynomials and algebraic
  integrability" by O.A. Chalykh, available at
  http://staff.science.uva.nl/~thk/art/comment/ChalykhComment.pdf.
 
- Letzter G., Stokman J.V., Macdonald difference operators and Harish-Chandra
  series, Proc. Lond. Math. Soc. (3) 97 (2008), 60-96,
  math.QA/0701218.
 
- van Meer M., Bispectral quantum Knizhnik-Zamolodchikov equations for
  arbitrary root systems, Selecta Math. (N.S.) 17 (2011),
  183-221, arXiv:0912.3784.
 
- van Meer M., Stokman J., Double affine Hecke algebras and bispectral quantum
  Knizhnik-Zamolodchikov equations, Int. Math. Res. Not.  (2010),
  no. 6,  969-1040, arXiv:0812.1005.
 
- Noumi M., Stokman J.V., Askey-Wilson polynomials: an affine Hecke algebra
  approach, in Laredo Lectures on Orthogonal Polynomials and Special
  Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci.
  Publ., Hauppauge, NY, 2004, 111-144, math.QA/0001033.
 
- Rahman M., The linearization of the product of continuous $q$-Jacobi
  polynomials, Canad. J. Math. 33 (1981), 961-987.
 
- Rahman M., Verma A., Quadratic transformation formulas for basic hypergeometric
  series, Trans. Amer. Math. Soc. 335 (1993), 277-302.
 
- Ruijsenaars S.N.M., A generalized hypergeometric function satisfying four
  analytic difference equations of Askey-Wilson type, Comm. Math.
  Phys. 206 (1999), 639-690.
 
- Ruijsenaars S.N.M., Quadratic transformations for a function that generalizes
  ${}_2F_1$ and the Askey-Wilson polynomials, Ramanujan J.
  13 (2007), 339-364.
 
- Sauloy J., Systèmes aux $q$-différences singuliers réguliers:
  classification, matrice de connexion et monodromie, Ann. Inst.
  Fourier (Grenoble) 50 (2000), 1021-1071.
 
- Singh V.N., The basic analogues of identities of the Cayley-Orr type,
  J. London Math. Soc. 34 (1959), 15-22.
 
- Slater L.J., A note on equivalent product theorems, Math. Gaz.
  38 (1954), 127-128.
 
- Stokman J.V., An expansion formula for the Askey-Wilson function,
  J. Approx. Theory 114 (2002), 308-342,
  math.CA/0105093.
 
- Stokman J.V., The $c$-function expansion of a basic hypergeometric function
  associated to root systems, arXiv:1109.0613.
 
- Suslov S.K., Some orthogonal very-well-poised ${}_8\phi_7$-functions that
  generalize Askey-Wilson polynomials, Ramanujan J. 5
  (2001), 183-218, math.CA/9707213.
 
 
 | 
 |