| 
 SIGMA 8 (2012), 040, 16 pages      arXiv:1006.1752     
https://doi.org/10.3842/SIGMA.2012.040 
The Vertex Algebra $M(1)^+$ and Certain Affine Vertex Algebras of Level $-1$
Dražen Adamović and Ozren Perše
 Faculty of Science, Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
 
 
Received March 09, 2012, in final form July 01, 2012; Published online July 08, 2012 
Abstract
 
We give  a coset realization of the vertex operator
algebra $M(1)^+$ with central charge $\ell$. We realize $M(1) ^+$
as a commutant of certain affine vertex algebras of level $-1$ in
the vertex algebra $L_{C_{\ell} ^{(1)}}(-\tfrac{1}{2}\Lambda_0)
\otimes L_{C_{\ell} ^{(1)}}(-\tfrac{1}{2}\Lambda_0)$. We  show that
the simple vertex algebra $L_{C_{\ell} ^{(1)}}(-\Lambda_0)$ can be
(conformally) embedded into $L_{A_{2 \ell -1} ^{(1)}} (-\Lambda_0)$
and find the corresponding decomposition. We also study certain
coset subalgebras inside $L_{C_{\ell} ^{(1)}}(-\Lambda_0)$.
  
 Key words:
vertex operator algebra; affine Kac-Moody algebra; coset vertex algebra; conformal embedding; $\mathcal{W}$-algebra. 
pdf (458 kb)  
tex (21 kb)
 
 
References
 
- Adamović D., A construction of some ideals in affine vertex algebras,
  Int. J. Math. Math. Sci.  (2003), 971-980,
  math.QA/0103006.
 
- Adamović D., Some rational vertex algebras, Glas. Mat. Ser. III
  29(49) (1994), 25-40, q-alg/9502015.
 
- Adamović D., Milas A., On the triplet vertex algebra ${\mathcal W}(p)$,
  Adv. Math. 217 (2008), 2664-2699, arXiv:0707.1857.
 
- Adamović D., Milas A., The $N=1$ triplet vertex operator superalgebras,
  Comm. Math. Phys. 288 (2009), 225-270, arXiv:0712.0379.
 
- Adamović D., Milas A., Vertex operator algebras associated to modular
  invariant representations for $A^{(1)}_1$, Math. Res. Lett.
  2 (1995), 563-575, q-alg/9509025.
 
- Adamović D., Perše O., Fusion rules and complete reducibility of
  certain modules for affine Lie algebras, in preparation.
 
- Adamović D., Perše O., On coset vertex algebras with central charge 1, Math. Commun. 15 (2010), 143-157.
 
- Adamović D., Perše O., Representations of certain non-rational vertex
  operator algebras of affine type, J. Algebra 319 (2008),
  2434-2450, math.QA/0702018.
 
- Arakawa T., Representation theory of ${\mathcal W}$-algebras, Invent.
  Math. 169 (2007), 219-320, math.QA/0506056.
 
- Borcherds R.E., Vertex algebras, Kac-Moody algebras, and the Monster,
  Proc. Nat. Acad. Sci. USA 83 (1986), 3068-3071.
 
- Bourbaki N., Éléments de mathématique. Fasc. XXXVIII: Groupes et
  algèbres de Lie, Actualités Scientifiques et Industrielles, Vol.
  1364, Hermann, Paris, 1975.
 
- Dong C., Griess R.L., Rank one lattice type vertex operator algebras and their
  automorphism groups, J. Algebra 208 (1998), 262-275,
  q-alg/9710017.
 
- Dong C., Lam C.H., Yamada H., $\mathcal W$-algebras related to parafermion
  algebras, J. Algebra 322 (2009), 2366-2403,
  arXiv:0809.3630.
 
- Dong C., Mason G., On quantum Galois theory, Duke Math. J.
  86 (1997), 305-321, hep-th/9412037.
 
- Dong C., Nagatomo K., Classification of irreducible modules for the vertex
  operator algebra $M(1)^+$, J. Algebra 216 (1999),
  384-404, math.QA/9806051.
 
- Dong C., Nagatomo K., Classification of irreducible modules for the vertex
  operator algebra $M(1)^+$. II. Higher rank, J. Algebra
  240 (2001), 289-325, math.QA/9905064.
 
- Feingold A.J., Frenkel I.B., Classical affine algebras, Adv. Math.
  56 (1985), 117-172.
 
- Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves,
  Mathematical Surveys and Monographs, Vol. 88, American Mathematical
  Society, Providence, RI, 2001.
 
- Frenkel I.B., Huang Y.Z., Lepowsky J., On axiomatic approaches to vertex
  operator algebras and modules, Mem. Amer. Math. Soc. 104
  (1993), no. 494.
 
- Frenkel I.B., Lepowsky J., Meurman A., Vertex operator algebras and the
  Monster, Pure and Applied Mathematics, Vol. 134, Academic Press
  Inc., Boston, MA, 1988.
 
- Frenkel I.B., Zhu Y., Vertex operator algebras associated to representations of
  affine and Virasoro algebras, Duke Math. J. 66 (1992),
  123-168.
 
- Goddard P., Kent A., Olive D., Virasoro algebras and coset space models,
  Phys. Lett. B 152 (1985), 88-92.
 
- Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University
  Press, Cambridge, 1990.
 
- Kac V.G., Vertex algebras for beginners, University Lecture Series,
  Vol. 10, 2nd ed., American Mathematical Society, Providence, RI, 1998.
 
- Kac V.G., Wakimoto M., Modular invariant representations of
  infinite-dimensional Lie algebras and superalgebras, Proc. Nat.
  Acad. Sci. USA 85 (1988), 4956-4960.
 
- Kac V.G., Wakimoto M., On rationality of $W$-algebras, Transform.
  Groups 13 (2008), 671-713, arXiv:0711.2296.
 
- Lepowsky J., Li H., Introduction to vertex operator algebras and their
  representations, Progress in Mathematics, Vol. 227, Birkhäuser
  Boston Inc., Boston, MA, 2004.
 
- Li H.S., Local systems of vertex operators, vertex superalgebras and modules,
  J. Pure Appl. Algebra 109 (1996), 143-195,
  hep-th/9406185.
 
- Meurman A., Primc M., Annihilating fields of standard modules of
${\mathfrak{sl}}(2,{\mathbb C})^\sim$ and combinatorial identities,
  Mem. Amer. Math. Soc. 137 (1999), no. 652.
 
- Perše O., Vertex operator algebras associated to certain admissible
  modules for affine Lie algebras of type $A$, Glas. Mat. Ser. III
  43(63) (2008), 41-57, arXiv:0707.4129.
 
- Perše O., Vertex operator algebras associated to type $B$ affine Lie
  algebras on admissible half-integer levels, J. Algebra 307
  (2007), 215-248, math.QA/0512129.
 
 
 | 
 |