| 
 SIGMA 8 (2012), 041, 12 pages      arXiv:1205.6239     
https://doi.org/10.3842/SIGMA.2012.041 
Contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions” 
Harmonic Oscillator SUSY Partners and Evolution Loops
David J. Fernández
 Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F., México
 
 
Received May 28, 2012, in final form July 04, 2012; Published online July 11, 2012 
Abstract
 
Supersymmetric quantum mechanics is a powerful tool for generating exactly solvable potentials departing from a given initial one. If applied to the harmonic oscillator, a family of Hamiltonians ruled by polynomial Heisenberg algebras is obtained. In this paper it will be shown that the SUSY partner Hamiltonians of the harmonic oscillator can produce evolution loops. The corresponding geometric phases will be as well studied.
  
 Key words:
supersymmetric quantum mechanics; quantum harmonic oscillator; polynomial Heisenberg algebra; geometric phase. 
pdf (450 kb)  
tex (117 kb)
 
 
References
 
- Adler V.E., Nonlinear chains and Painlevé equations, Phys. D
  73 (1994), 335-351.
 
- Aharonov Y., Anandan J., Phase change during a cyclic quantum evolution,
  Phys. Rev. Lett. 58 (1987), 1593-1596.
 
- Aizawa N., Sato H.T., Isospectral Hamiltonians and W1+∞ algebra,
  Progr. Theoret. Phys. 98 (1997), 707-718,
  quant-ph/9601026.
 
- Anandan J., Christian J., Wanelik K., Resource letter GPP-1: geometric phases
  in physics, Amer. J. Phys. 65 (1997), 180-185,
  quant-ph/9702011.
 
- Andrianov A.A., Cannata F., Nonlinear supersymmetry for spectral design in
  quantum mechanics, J. Phys. A: Math. Gen. 37 (2004),
  10297-10321, hep-th/0407077.
 
- Andrianov A.A., Cannata F., Ioffe M.V., Nishnianidze D.N., Systems with higher-order
  shape invariance: spectral and algebraic properties, Phys. Lett. A
  266 (2000), 341-349, quant-ph/9902057.
 
- Andrianov A.A., Ioffe M.V., Cannata F., Dedonder J.P., Second order derivative
  supersymmetry, q-deformations and the scattering problem,
  Internat. J. Modern Phys. A 10 (1995), 2683-2702,
  hep-th/9404061.
 
- Andrianov A.A., Ioffe M.V., Spiridonov V.P., Higher-derivative supersymmetry
  and the Witten index, Phys. Lett. A 174 (1993), 273-279,
  hep-th/9303005.
 
- Ark M., Atakishiyev N.M., Wolf K.B., Quantum algebraic structures
  compatible with the harmonic oscillator Newton equation,
  J. Phys. A: Math. Gen. 32 (1999), L371-L376.
 
- Bagchi B.K., Supersymmetry in quantum and classical mechanics, Chapman
  & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Vol. 116, Chapman & Hall/CRC, Boca Raton, FL, 2001.
 
- Bagrov V.G., Samsonov B.F., Darboux transformation of the Schrödinger
  equation, Phys. Part. Nuclei 28 (1997), 374-397.
 
- Baye D., Sparenberg J.M., Inverse scattering with supersymmetric quantum
  mechanics, J. Phys. A: Math. Gen. 37 (2004), 10223-10249.
 
- Bermúdez D., Fernández D.J., Non-Hermitian Hamiltonians and the
  Painlevé IV equation with real parameters, Phys. Lett. A
  375 (2011), 2974-2978, arXiv:1104.3599.
 
- Bermúdez D., Fernández D.J., Supersymmetric quantum mechanics and
  Painlevé IV equation, SIGMA 7 (2011), 025, 14 pages,
  arXiv:1012.0290.
 
- Berry M.V., Quantal phase factors accompanying adiabatic changes, Proc.
  Roy. Soc. London Ser. A 392 (1984), 45-57.
 
- Bohm A., Boya L.J., Kendrick B., Derivation of the geometrical phase,
  Phys. Rev. A 43 (1991), 1206-1210.
 
- Carballo J.M., Fernández D.J., Negro J., Nieto L.M., Polynomial
  Heisenberg algebras, J. Phys. A: Math. Gen. 37 (2004),
  10349-10362.
 
- Cariñena J.F., Perelomov A.M., Rañada M.F., Isochronous classical systems
  and quantum systems with equally spaced spectra, J. Phys. Conf. Ser.
  87 (2007), 012007, 14 pages.
 
- Chruscinski D., Jamiokowski A., Geometric phases in classical and
  quantum mechanics, Progress in Mathematical Physics, Vol. 36,
  Birkhäuser Boston Inc., Boston, MA, 2004.
 
- Contreras-Astorga A., Fernández D.J., Supersymmetric partners of the
  trigonometric Pöschl-Teller potentials, J. Phys. A: Math.
  Theor. 41 (2008), 475303, 18 pages, arXiv:0809.2760.
 
- Cooper F., Khare A., Sukhatme U., Supersymmetry in quantum mechanics, World
  Scientific Publishing Co. Inc., River Edge, NJ, 2001.
 
- Correa F., Jakubský V., Nieto L.M., Plyushchay M.S., Self-isospectrality,
  special supersymmetry, and their effect on the band structure, Phys.
  Rev. Lett. 101 (2008), 030403, 4 pages, arXiv:0801.1671.
 
- Daoud M., Kibler M.R., Bosonic and k-fermionic coherent states for a class of
  polynomial Weyl-Heisenberg algebras, J. Phys. A: Math. Theor.
  45 (2012), 244036, 22 pages, arXiv:1110.4799.
 
- Daoud M., Kibler M.R., Fractional supersymmetry and hierarchy of shape
  invariant potentials, J. Math. Phys. 47 (2006), 122108,
  11 pages, quant-ph/0609017.
 
- Daoud M., Kibler M.R., Phase operators, temporally stable phase states,
  mutually unbiased bases and exactly solvable quantum systems,
  J. Phys. A: Math. Theor. 43 (2010), 115303, 18 pages,
  arXiv:1002.0955.
 
- Dong S.H., Factorization method in quantum mechanics, Fundamental
  Theories of Physics, Vol. 150, Springer, Dordrecht, 2007.
 
- Dubov S.Y., Eleonsky V.M., Kulagin N.E., Equidistant spectra of anharmonic
  oscillators, Sov. Phys. JETP 75 (1992), 446-451.
 
- Emmanouilidou A., Zhao X.G., Ao P., Niu Q., Steering an eigenstate to a
  destination, Phys. Rev. Lett. 85 (2000), 1626-1629.
 
- Fernández D.J., Bogdan Mielnik: contributions to quantum control, in
  Geometric Methods in Physics (XXX Workshop, Bialowieza, Poland, June 26 -
  July 2, 2011), Editors P. Kielanowski, S.T. Ali, A. Odzijewicz,
  M. Schlichenmaier, T. Voronov, to appear.
 
- Fernández D.J., Geometric phases and Mielnik's evolution loops,
  Int. J. Theor. Phys. 33 (1994), 2037-2047,
  hep-th/9410213.
 
- Fernández D.J., Supersymmetric quantum mechanics, AIP Conf. Proc.
  1287 (2010), 3-36, arXiv:0910.0192.
 
- Fernández D.J., SUSUSY quantum mechanics, Internat. J. Modern
  Phys. A 12 (1997), 171-176, quant-ph/9609009.
 
- Fernández D.J., Transformations of a wave packet in a Penning trap,
  Nuovo Cimento B 107 (1992), 885-893.
 
- Fernández D.J., Fernández-García N., Higher-order supersymmetric
  quantum mechanics, AIP Conf. Proc. 744 (2005), 236-273,
  quant-ph/0502098.
 
- Fernández D.J., Hussin V., Higher-order SUSY, linearized nonlinear
  Heisenberg algebras and coherent states, J. Phys. A: Math. Gen.
  32 (1999), 3603-3619.
 
- Fernández D.J., Hussin V., Mielnik B., A simple generation of exactly
  solvable anharmonic oscillators, Phys. Lett. A 244 (1998),
  309-316.
 
- Fernández D.J., Mielnik B., Controlling quantum motion, J. Math.
  Phys. 35 (1994), 2083-2104.
 
- Fernández D.J., Negro J., Nieto L.M., Elementary systems with partial finite
  ladder spectra, Phys. Lett. A 324 (2004), 139-144.
 
- Fernández D.J., Nieto L.M., del Olmo M.A., Santander M., Aharonov-Anandan
  geometric phase for spin-1/2 periodic Hamiltonians,
  J. Phys. A: Math. Gen. 25 (1992), 5151-5163.
 
- Fernández D.J., Rosas-Ortiz O., Inverse techniques and evolution of
  spin-1/2 systems, Phys. Lett. A 236 (1997), 275-279.
 
- Gangopadhyaya A., Mallow J.V., Rasinariu C., Supersymmetric quantum mechanics,
  World Scientific, Singapore, 2011.
 
- Horváthy P.A., Plyushchay M.S., Valenzuela M., Bosons, fermions and anyons
  in the plane, and supersymmetry, Ann. Physics 325 (2010),
  1931-1975, arXiv:1001.0274.
 
- Ioffe M.V., Nishnianidze D.N., SUSY intertwining relations of third order in
  derivatives, Phys. Lett. A 327 (2004), 425-432,
  hep-th/0404078.
 
- Lin Q.G., Time evolution, cyclic solutions and geometric phases for general
  spin in an arbitrarily varying magnetic field, J. Phys. A: Math.
  Gen. 36 (2003), 6799-6806, quant-ph/0307099.
 
- Lin Q.G., Time evolution, cyclic solutions and geometric phases for the
  generalized time-dependent harmonic oscillator, J. Phys. A: Math.
  Gen. 37 (2004), 1345-1371, quant-ph/0402159.
 
- Marquette I., Superintegrability and higher order polynomial algebras,
  J. Phys. A: Math. Theor. 43 (2010), 135203, 15 pages,
  arXiv:0908.4399.
 
- Mateo J., Negro J., Third-order differential ladder operators and
  supersymmetric quantum mechanics, J. Phys. A: Math. Theor.
  41 (2008), 045204, 28 pages.
 
- Mielnik B., Evolution loops, J. Math. Phys. 27 (1986),
  2290-2306.
 
- Mielnik B., Factorization method and new potentials with the oscillator
  spectrum, J. Math. Phys. 25 (1984), 3387-3389.
 
- Mielnik B., Global mobility of Schrödinger's particle, Rep. Math.
  Phys. 12 (1977), 331-339.
 
- Mielnik B., Space echo, Lett. Math. Phys. 12 (1986), 49-56.
 
- Mielnik B., Nieto L.M., Rosas-Ortiz O., The finite difference algorithm for
  higher order supersymmetry, Phys. Lett. A 269 (2000),
  70-78, quant-ph/0004024.
 
- Mielnik B., Ramírez A., Ion traps: some semiclassical observations,
  Phys. Scr. 82 (2010), 055002, 13 pages.
 
- Mielnik B., Ramírez A., Magnetic operations: a little fuzzy mechanics?,
  Phys. Scr. 84 (2011), 045008, 17 pages,
  arXiv:1006.1944.
 
- Mielnik B., Rosas-Ortiz O., Factorization: little or great algorithm?,
  J. Phys. A: Math. Gen. 37 (2004), 10007-10035.
 
- Mostafazadeh A., Dinamical invariants, adiabatic approximation and the
  geometric phase, Nova Science Publishers Inc., New York, 1992.
 
- Plyushchay M.S., Deformed Heisenberg algebra with reflection, Nuclear
  Phys. B 491 (1997), 619-634, hep-th/9701091.
 
- Shapere A., Wilczek F. (Editors), Geometric phases in physics, Advanced
  Series in Mathematical Physics, Vol. 5, World Scientific Publishing Co.
  Inc., Teaneck, NJ, 1989.
 
- Sukumar C.V., Supersymmetric quantum mechanics and its applications,
  AIP Conf. Proc. 744 (2005), 166-235.
 
- Veselov A.P., Shabat A.B., Dressing chains and the spectral theory of the
  Schrödinger operator, Func. Anal. Appl. 27 (1993),
  81-96.
 
 
 | 
 |