| 
 SIGMA 8 (2012), 043, 26 pages       arXiv:1111.0120      
https://doi.org/10.3842/SIGMA.2012.043 
Contribution to the Special Issue “Geometrical Methods in Mathematical Physics” 
Darboux Integrals for Schrödinger Planar Vector Fields via Darboux Transformations
Primitivo B. Acosta-Humánez a and Chara Pantazi b
 a) Departamento de Matemáticas y Estadística Universidad del Norte, Km. 5 via Puerto Colombia, Barranquilla, Colombia
 b) Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, (EPSEB), Av. Doctor Marañón, 44-50, 08028 Barcelona, Spain
 
 
Received March 05, 2012, in final form July 06, 2012; Published online July 14, 2012 
Abstract
 
In this paper we study the Darboux transformations of planar vector fields of Schrödinger type. Using the isogaloisian property of Darboux transformation we prove the ''invariance'' of the objects of the ''Darboux theory of integrability''. In particular, we also show how the shape invariance property of the potential is important in order to preserve the structure of the
 transformed vector field. Finally, as illustration of these results, some examples of planar vector fields coming from supersymmetric quantum
  mechanics are studied.
  
 Key words:
Darboux theory of integrability; Darboux transformations; differential Galois theory; Schrödinger equation; supersymmetric quantum mechanics. 
pdf (451 kb)  
tex (30 kb)
 
 
References
 
- Acosta-Humánez P.B., Galoisian approach to supersymmetric quantum
  mechanics. The integrability analysis of the Schrödinger equation by means
  of differential Galois theory, VDM Verlag, Dr Müller, Berlin, 2010.
 
- Acosta-Humánez P.B., Lázaro-Ochoa J.T., Morales-Ruiz J.J., Pantazi Ch., On
  the integrability of polynomial fields in the plane by means of
  Picard-Vessiot theory, arXiv:1012.4796.
 
- Acosta-Humánez P.B., Morales-Ruiz J.J., Weil J.A., Galoisian approach to
  integrability of Schrödinger equation, Rep. Math. Phys.
  67 (2011), 305-374, arXiv:1008.3445.
 
- Berkovich L.M., Evlakhov S.A., The Euler-Imshenetski-Darboux
  transformation of second-order linear equations, Program. Comput.
  Software 32 (2006), 154-165.
 
- Blázquez-Sanz D., Pantazi Ch., A note on the Darboux theory of integrability
  of non autonomous polynomial differential systems, Preprint, 2011.
 
- Blecua P., Boya L.J., Segui A., New solvable quantum-mechanical potentials by
  iteration of the free V=0 potential, Nuovo Cimento B
  118 (2003), 535-546, quant-ph/0311139.
 
- Carnicer M.M., The Poincaré problem in the nondicritical case, Ann.
  of Math. (2) 140 (1994), 289-294.
 
- Cerveau D., Lins Neto A., Holomorphic foliations in CP(2)
  having an invariant algebraic curve, Ann. Inst. Fourier (Grenoble)
  41 (1991), 883-903.
 
- Christopher C., Llibre J., Algebraic aspects of integrability for polynomial
  systems, Qual. Theory Dyn. Syst. 1 (1999), 71-95.
 
- Christopher C., Llibre J., Pantazi Ch., Walcher S., Inverse problems for
  invariant algebraic curves: explicit computations, Proc. Roy. Soc.
  Edinburgh Sect. A 139 (2009), 287-302.
 
- Christopher C., Llibre J., Pantazi Ch., Walcher S., Inverse problems for
  multiple invariant curves, Proc. Roy. Soc. Edinburgh Sect. A
  137 (2007), 1197-1226.
 
- Christopher C., Llibre J., Pantazi Ch., Zhang X., Darboux integrability and
  invariant algebraic curves for planar polynomial systems, J. Phys. A:
  Math. Gen. 35 (2002), 2457-2476.
 
- Christopher C., Llibre J., Pereira J.V., Multiplicity of invariant algebraic
  curves in polynomial vector fields, Pacific J. Math. 229
  (2007), 63-117.
 
- Cooper F., Khare A., Sukhatme U., Supersymmetry in quantum mechanics, World
Scientific Publishing Co. Inc., River Edge, NJ, 2001.
 
- Darboux G., Mémoire sur les équations différentielles algébriques du
  premier ordre et du premier degré, Bull. Sci. Math. (2) 2
  (1878), 60-96, 123-144, 151-200.
 
- Darboux G., Sur une proposition relative aux équations linéaires,
  Comptes Rendus Acad. Sci. 94 (1882), 1456-1459.
 
- Darboux G., Théorie des Surfaces, II, Gauthier-Villars, Paris, 1889.
 
- García I.A., Giacomini H., Giné J., Generalized nonlinear
  superposition principles for polynomial planar vector fields, J. Lie
  Theory 15 (2005), 89-104.
 
- García I.A., Giné J., Generalized cofactors and nonlinear
  superposition principles, Appl. Math. Lett. 16 (2003),
  1137-1141.
 
- Gendenshteïn L.E., Derivation of exact spectra of the Schrödinger
  equation by means of supersymmetry, JETP Lett. 38 (1983),
  356-359.
 
- Giné J., Llibre J., A family of isochronous foci with Darboux first
  integral, Pacific J. Math. 218 (2005), 343-355.
 
- Ince E.L., Ordinary differential equations, Dover Publications, New York, 1944.
 
- Jouanolou J.P., Équations de Pfaff algébriques, Lecture Notes
  in Mathematics, Vol. 708, Springer, Berlin, 1979.
 
- Kalnins E.G., Kress J.M., Miller W., Families of classical subgroup
  separable superintegrable systems, J. Phys. A: Math. Theor.
  43 (2010), 092001, 8 pages, arXiv:0912.3158.
 
- Kalnins E.G., Kress J.M., Miller W., Superintegrability and higher order
  integrals for quantum systems, J. Phys. A: Math. Theor. 43
  (2010), 265205, 21 pages, arXiv:1002.2665.
 
- Kaplansky I., An introduction to differential algebra, Hermann, Paris, 1957.
 
- Kolchin E.R., Differential algebra and algebraic groups, Pure and
  Applied Mathematics, Vol. 54, Academic Press, New York, 1973.
 
- Kovacic J.J., An algorithm for solving second order linear homogeneous
  differential equations, J. Symbolic Comput. 2 (1986),
  3-43.
 
- Llibre J., On the integrability of the differential systems in dimension two
  and of the polynomial differential systems in arbitrary dimension,
  J. Appl. Anal. Comput. 1 (2011), 33-52.
 
- Llibre J., Pantazi Ch., Darboux theory of integrability for a class of
  nonautonomous vector fields, J. Math. Phys. 50 (2009),
  102705, 19 pages.
 
- Llibre J., Rodríguez G., Configurations of limit cycles and planar
  polynomial vector fields, J. Differential Equations 198
  (2004), 374-380.
 
- Llibre J., Zhang X., Rational first integrals in the Darboux theory of
  integrability in Cn, Bull. Sci. Math. 134
  (2010), 189-195.
 
- Maciejewski A.J., Przybylska M., Yoshida H., Necessary conditions for classical
  super-integrability of a certain family of potentials in constant curvature
  spaces, J. Phys. A: Math. Theor. 43 (2010), 382001,
  15 pages, arXiv:1004.3854.
 
- Nikiforov A.F., Uvarov V.B., Special functions of mathematical physics.
  A unified introduction with applications, Birkhäuser Verlag, Basel, 1988.
 
- Pantazi Ch., Inverse problems of the Darboux theory of integrability for planar
  polynomial differential systems, Ph.D. thesis, Universitat Autonoma de
  Barcelona, 2004.
 
- Prelle M.J., Singer M.F., Elementary first integrals of differential equations,
  Trans. Amer. Math. Soc. 279 (1983), 215-229.
 
- Ramis J.P., Martinet J., Théorie de Galois différentielle et resommation,
  in Computer Algebra and Differential Equations, Comput. Math. Appl., Academic
  Press, London, 1990, 117-214.
 
- Schlomiuk D., Algebraic particular integrals, integrability and the problem of
  the center, Trans. Amer. Math. Soc. 338 (1993), 799-841.
 
- Singer M.F., Liouvillian first integrals of differential equations,
  Trans. Amer. Math. Soc. 333 (1992), 673-688.
 
- Spiridonov V., Universal superpositions of coherent states and self-similar
  potentials, Phys. Rev. A 52 (1995), 1909-1935,
  quant-ph/9601030.
 
- Teschl G., Mathematical methods in quantum mechanics. With applications to
  Schrödinger operators, Graduate Studies in Mathematics, Vol. 99,
  American Mathematical Society, Providence, RI, 2009.
 
- Tremblay F., Turbiner A.V., Winternitz P., An infinite family of solvable and
  integrable quantum systems on a plane, J. Phys. A: Math. Theor.
  42 (2009), 242001, 10 pages, arXiv:0904.0738.
 
- van der Put M., Singer M.F., Galois theory of linear differential equations,
  Grundlehren der Mathematischen Wissenschaften, Vol. 328,
  Springer-Verlag, Berlin, 2003.
 
- Weil J.A., Introduction to differential algebra and differential Galois theory,
  CIMPA-UNESCO Lectures, Hanoi, 2001.
 
- Witten E., Dynamical breaking of supersymmetry, Nuclear Phys. B
  188 (1981), 513-554.
 
- Zoladek H., Polynomial Riccati equations with algebraic solutions,
  in Differential Galois Theory (Bedlewo, 2001), Banach Center
  Publ., Vol. 58, Polish Acad. Sci., Warsaw, 2002, 219-231.
 
 
 | 
 |