| 
 SIGMA 8 (2012), 048, 58 pages      arXiv:1112.0291     
https://doi.org/10.3842/SIGMA.2012.048 
Contribution to the Special Issue “Loop Quantum Gravity and Cosmology” 
Isolated Horizons and Black Hole Entropy in Loop Quantum Gravity
Jacobo Diaz-Polo a and Daniele Pranzetti b
 a) Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USA
 b) Max Planck Institute for Gravitational Physics (AEI), Am Mühlenberg 1, D-14476 Golm, Germany
 
 
Received December 02, 2011, in final form July 18, 2012; Published online August 01, 2012 
Abstract
 
We review the black hole entropy calculation in the framework of Loop Quantum Gravity based on the quasi-local definition of a black hole encoded in the isolated horizon formalism. We show, by means of the covariant phase space framework, the appearance in the conserved symplectic structure of a boundary term corresponding to a Chern-Simons theory on the horizon and present its quantization both in the U(1) gauge fixed version and in the fully SU(2) invariant one. We then describe the boundary degrees of freedom counting techniques developed for an infinite value of the Chern-Simons level case and, less rigorously, for the case of a finite value. This allows us to perform a comparison between the U(1) and SU(2) approaches and provide a state of the art analysis of their common features and different implications for the entropy calculations. In particular, we comment on different points of view regarding the nature of the horizon degrees of freedom and the role played by the Barbero-Immirzi parameter. We conclude by presenting some of the most recent results concerning possible observational tests for theory.
  
 Key words:
black hole entropy; quantum gravity; isolated horizons. 
pdf (1101 kb)  
tex (638 kb)
 
 
References
 
- Agulló I., Barbero G. J.F., Borja E.F., Diaz-Polo J., Villaseñor
  E.J.S., Combinatorics of the SU(2) black hole entropy in loop quantum
  gravity, Phys. Rev. D 80 (2009), 084006, 3 pages,
  arXiv:0906.4529.
 
- Agulló I., Barbero G. J.F., Borja E.F., Diaz-Polo J., Villaseñor
  E.J.S., Detailed black hole state counting in loop quantum gravity,
  Phys. Rev. D 82 (2010), 084029, 31 pages,
  arXiv:1101.3660.
 
- Agulló I., Barbero G. J.F., Diaz-Polo J., Borja E.F., Villaseñor
  E.J.S., Black hole state counting in loop quantum gravity: a
  number-theoretical approach, Phys. Rev. Lett. 100 (2008),
  211301, 4 pages, arXiv:0802.4077.
 
- Agulló I., Borja E.F., Diaz-Polo J., Computing black hole entropy in loop
  quantum gravity from a conformal field theory perspective, J. Cosmol.
  Astropart. Phys. 2009 (2009), 016, 9 pages, arXiv:0903.1667.
 
- Agulló I., Diaz-Polo J., Borja E.F., Black hole state degeneracy in loop
  quantum gravity, Phys. Rev. D 77 (2008), 104024, 11 pages,
  arXiv:0802.3188.
 
- Archer F., Williams R.M., The Turaev-Viro state sum model and
  three-dimensional quantum gravity, Phys. Lett. B 273
  (1991), 438-444.
 
- Ashtekar A., Baez J., Corichi A., Krasnov K., Quantum geometry and black hole
  entropy, Phys. Rev. Lett. 80 (1998), 904-907,
  gr-qc/9710007.
 
- Ashtekar A., Baez J.C., Krasnov K., Quantum geometry of isolated horizons and
  black hole entropy, Adv. Theor. Math. Phys. 4 (2000),
  1-94, gr-qc/0005126.
 
- Ashtekar A., Beetle C., Dreyer O., Fairhurst S., Krishnan B., Lewandowski J.,
  Wisniewski J., Generic isolated horizons and their applications,
  Phys. Rev. Lett. 85 (2000), 3564-3567,
  gr-qc/0006006.
 
- Ashtekar A., Beetle C., Fairhurst S., Isolated horizons: a generalization of
  black hole mechanics, Classical Quantum Gravity 16 (1999),
  L1-L7, gr-qc/9812065.
 
- Ashtekar A., Beetle C., Fairhurst S., Mechanics of isolated horizons,
  Classical Quantum Gravity 17 (2000), 253-298,
  gr-qc/9907068.
 
- Ashtekar A., Beetle C., Lewandowski J., Geometry of generic isolated horizons,
  Classical Quantum Gravity 19 (2002), 1195-1225,
  gr-qc/0111067.
 
- Ashtekar A., Beetle C., Lewandowski J., Mechanics of rotating isolated
  horizons, Phys. Rev. D 64 (2001), 044016, 17 pages,
  gr-qc/0103026.
 
- Ashtekar A., Bojowald M., Black hole evaporation: a paradigm, Classical
  Quantum Gravity 22 (2005), 3349-3362, gr-qc/0504029.
 
- Ashtekar A., Bojowald M., Quantum geometry and the Schwarzschild singularity,
  Classical Quantum Gravity 23 (2006), 391-411,
  gr-qc/0509075.
 
- Ashtekar A., Corichi A., Krasnov K., Isolated horizons: the classical phase
  space, Adv. Theor. Math. Phys. 3 (1999), 419-478,
  gr-qc/9905089.
 
- Ashtekar A., Engle J., Pawlowski T., Van Den Broeck C., Multipole moments of
  isolated horizons, Classical Quantum Gravity 21 (2004),
  2549-2570, gr-qc/0401114.
 
- Ashtekar A., Engle J., Van Den Broeck C., Quantum horizons and black-hole
  entropy: inclusion of distortion and rotation, Classical Quantum
  Gravity 22 (2005), L27-L34, gr-qc/0412003.
 
- Ashtekar A., Fairhurst S., Krishnan B., Isolated horizons: Hamiltonian
  evolution and the first law, Phys. Rev. D 62 (2000),
  104025, 29 pages, gr-qc/0005083.
 
- Ashtekar A., Krishnan B., Dynamical horizons and their properties,
  Phys. Rev. D 68 (2003), 104030, 25 pages,
  gr-qc/0308033.
 
- Ashtekar A., Krishnan B., Dynamical horizons: energy, angular momentum, fluxes,
  and balance laws, Phys. Rev. Lett. 89 (2002), 261101,
  4 pages, gr-qc/0207080.
 
- Ashtekar A., Krishnan B., Isolated and dynamical horizons and their
  applications, Living Rev. Relativ. 7 (2004), 10, 91 pages,
  gr-qc/0407042.
 
- Ashtekar A., Lewandowski J., Background independent quantum gravity: a status
  report, Classical Quantum Gravity 21 (2004), R53-R152,
  gr-qc/0404018.
 
- Ashtekar A., Taveras V., Varadarajan M., Information is not lost in the
  evaporation of 2D black holes, Phys. Rev. Lett. 100
  (2008), 211302, 4 pages, arXiv:0801.1811.
 
- Barbero G. J.F., Villaseñor E.J.S., Generating functions for black hole
  entropy in loop quantum gravity, Phys. Rev. D 77 (2008),
  121502, 5 pages, arXiv:0804.4784.
 
- Barbero G. J.F., Villaseñor E.J.S., On the computation of black hole
  entropy in loop quantum gravity, Classical Quantum Gravity
  26 (2009), 035017, 22 pages, arXiv:0810.1599.
 
- Barbero G. J.F., Villaseñor E.J.S., Statistical description of the black
  hole degeneracy spectrum, Phys. Rev. D 83 (2011), 104013,
  21 pages, arXiv:1101.3662.
 
- Barbero G. J.F., Villaseñor E.J.S., The thermodynamic limit and black hole
  entropy in the area ensemble, Classical Quantum Gravity 28
  (2011), 215014, 15 pages, arXiv:1106.3179.
 
- Barrau A., Cailleteau T., Cao X., Diaz-Polo J., Grain J., Probing loop quantum
  gravity with evaporating black holes, Phys. Rev. Lett. 107
  (2011), 251301, 5 pages, arXiv:1109.4239.
 
- Beetle C., Engle J., Generic isolated horizons in loop quantum gravity,
  Classical Quantum Gravity 27 (2010), 235024, 13 pages,
  arXiv:1007.2768.
 
- Bekenstein J.D., Black holes and entropy, Phys. Rev. D 7
  (1973), 2333-2346.
 
- Bianchi E., Black hole entropy, loop gravity, and polymer physics,
  Classical Quantum Gravity 28 (2011), 114006, 12 pages,
  arXiv:1011.5628.
 
- Bojowald M., Nonsingular black holes and degrees of freedom in quantum gravity,
  Phys. Rev. Lett. 95 (2005), 061301, 4 pages,
  gr-qc/0506128.
 
- Bojowald M., Kastrup H.A., Symmetry reduction for quantized
  diffeomorphism-invariant theories of connections, Classical Quantum
  Gravity 17 (2000), 3009-3043, hep-th/9907042.
 
- Booth I., Black hole boundaries, Can. J. Phys. 83 (2005),
  1073-1099, gr-qc/0508107.
 
- Broderick A.E., Loeb A., Narayan R., The event horizon of sagittarius A*,
  Astrophys. J. 701 (2009), 1357-1366, arXiv:0903.1105.
 
- Burton D.M., Elementary number theory, McGraw-Hill, New York, 2002.
 
- Carlip S., Black hole entropy from conformal field theory in any dimension,
  Phys. Rev. Lett. 82 (1999), 2828-2831,
  hep-th/9812013.
 
- Carlip S., Black hole thermodynamics and statistical mechanics, in Physics of
  Black Holes, Lecture Notes in Phys., Vol. 769, Springer, Berlin,
  2009, 89-123, arXiv:0807.4520.
 
- Carlip S., Entropy from conformal field theory at Killing horizons,
  Classical Quantum Gravity 16 (1999), 3327-3348,
  gr-qc/9906126.
 
- Carlip S., Logarithmic corrections to black hole entropy, from the Cardy
  formula, Classical Quantum Gravity 17 (2000), 4175-4186,
  gr-qc/0005017.
 
- Chandrasekhar S., The mathematical theory of black holes, International
  Series of Monographs on Physics, Vol. 69, The Clarendon Press Oxford
  University Press, New York, 1992.
 
- Chary V., Pressley A., A guide to quantum groups, Cambridge University Press,
  Cambridge, 1994.
 
- Corichi A., Diaz-Polo J., Borja E.F., Black hole entropy quantization,
  Phys. Rev. Lett. 98 (2007), 181301, 4 pages,
  gr-qc/0609122.
 
- Corichi A., Diaz-Polo J., Borja E.F., Quantum geometry and microscopic black
  hole entropy, Classical Quantum Gravity 24 (2007),
  243-251, gr-qc/0605014.
 
- Corichi A., Wilson-Ewing E., Surface terms, asymptotics and thermodynamics of
  the Holst action, Classical Quantum Gravity 27 (2010),
  205015, 14 pages, arXiv:1005.3298.
 
- Crnkovic C., Witten E., Covariant description of canonical formalism
  in geometrical theories, in Three Hundred Years of Gravitation, Cambridge
  University Press, Cambridge, 1987, 676-684.
 
- Das S., Kaul R.K., Majumdar P., New holographic entropy bound from quantum
  geometry, Phys. Rev. D 63 (2001), 044019, 4 pages,
  hep-th/0006211.
 
- De Raedt H., Michielsen K., De Raedt K., Miyashita S., Number partitioning on a
  quantum computer, Phys. Lett. A 290 (2001), 227-233,
  quant-ph/0010018.
 
- DeBenedictis A., Kloster S., Brannlund J., A note on the symmetry reduction of
  SU(2) on horizons of various topologies, Classical Quantum
  Gravity 28 (2011), 105023, 11 pages, arXiv:1101.4631.
 
- Di Francesco P., Mathieu P., Sénéchal D., Conformal field theory,
  Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997.
 
- Diaz-Polo J., Borja E.F., Black hole radiation spectrum in loop quantum
  gravity: isolated horizon framework, Classical Quantum Gravity
  25 (2008), 105007, 8 pages, arXiv:0706.1979.
 
- Domagala M., Lewandowski J., Black-hole entropy from quantum geometry,
  Classical Quantum Gravity 21 (2004), 5233-5243,
  gr-qc/0407051.
 
- Durka R., Kowalski-Glikman J., Gravity as a constrained BF theory: Noether
  charges and Immirzi parameter, Phys. Rev. D 83 (2011),
  124011, 6 pages, arXiv:1103.2971.
 
- Engle J., Noui K., Perez A., Black hole entropy and SU(2) Chern-Simons
  theory, Phys. Rev. Lett. 105 (2010), 031302, 4 pages,
  arXiv:0905.3168.
 
- Engle J., Noui K., Perez A., Pranzetti D., Black hole entropy from the
  SU(2)-invariant formulation of type I isolated horizons, Phys.
  Rev. D 82 (2010), 044050, 23 pages, arXiv:1006.0634.
 
- Engle J., Noui K., Perez A., Pranzetti D., The SU(2) black hole entropy
  revisited, J. High Energy Phys. 2011 (2011), no. 5, 016,
  30 pages, arXiv:1103.2723.
 
- Flajolet P., Sedgewick R., Analytic combinatorics, Cambridge University Press,
  Cambridge, 2009.
 
- Fleischhack C., Representations of the Weyl algebra in quantum geometry,
  Comm. Math. Phys. 285 (2009), 67-140,
  math-ph/0407006.
 
- Freidel L., Livine E.R., The fine structure of SU(2) intertwiners from
  U(N) representations, J. Math. Phys. 51 (2010), 082502,
  19 pages, arXiv:0911.3553.
 
- Frodden E., Ghosh A., Perez A., A local first law for isolated horizons,
  arXiv:1110.4055.
 
- Geroch R.P., Held A., Penrose R., A space-time calculus based on pairs of null
  directions, J. Math. Phys. 14 (1973), 874-881.
 
- Ghosh A., Mitra P., An improved estimate of black hole entropy in the quantum
  geometry approach, Phys. Lett. B 616 (2005), 114-117,
  gr-qc/0411035.
 
- Ghosh A., Mitra P., Counting black hole microscopic states in loop quantum
  gravity, Phys. Rev. D 74 (2006), 064026, 5 pages,
  hep-th/0605125.
 
- Ghosh A., Mitra P., Fine-grained state counting for black holes in loop quantum
  gravity, Phys. Rev. Lett. 102 (2009), 141302, 4 pages,
  arXiv:0809.4170.
 
- Ghosh A., Mitra P., Log correction to the black hole area law, Phys.
  Rev. D 71 (2005), 027502, 3 pages, gr-qc/0401070.
 
- Ghosh A., Perez A., Black hole entropy and isolated horizons thermodynamics,
  Phys. Rev. Lett. 107 (2011), 241301, 5 pages,
  arXiv:1107.1320.
 
- Gour G., Algebraic approach to quantum black holes: logarithmic corrections to
  black hole entropy, Phys. Rev. D 66 (2002), 104022,
  8 pages, gr-qc/0210024.
 
- Hawking S.W., Particle creation by black holes, Comm. Math. Phys.
  43 (1975), 199-220.
 
- Hawking S.W., Ellis G.F.R., The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, Cambridge
  University Press, London, 1973.
 
- Hayward S.A., General laws of black-hole dynamics, Phys. Rev. D
  49 (1994), 6467-6474, gr-qc/9303006.
 
- Hayward S.A., Spin coefficient form of the new laws of black hole dynamics,
  Classical Quantum Gravity 11 (1994), 3025-3035,
  gr-qc/9406033.
 
- Jacobson T., A note on renormalization and black hole entropy in loop quantum
  gravity, Classical Quantum Gravity 24 (2007), 4875-4879,
  arXiv:0707.4026.
 
- Kaul R.K., Majumdar P., Logarithmic correction to the Bekenstein-Hawking
  entropy, Phys. Rev. Lett. 84 (2000), 5255-5257,
  gr-qc/0002040.
 
- Kaul R.K., Majumdar P., Quantum black hole entropy, Phys. Lett. B
  439 (1998), 267-270, gr-qc/9801080.
 
- Kerr R.P., Gravitational field of a spinning mass as an example of
  algebraically special metrics, Phys. Rev. Lett. 11 (1963),
  237-238.
 
- Kloster S., Brannlund J., DeBenedictis A., Phase space and black-hole entropy
  of higher genus horizons in loop quantum gravity, Classical Quantum
  Gravity 25 (2008), 065008, 18 pages, gr-qc/0702036.
 
- Krasnov K., On quantum statistical mechanics of a Schwarzschild black hole,
  Gen. Relativity Gravitation 30 (1998), 53-68,
  gr-qc/9605047.
 
- Krasnov K., Quantum geometry and thermal radiation from black holes,
  Classical Quantum Gravity 16 (1999), 563-578,
  gr-qc/9710006.
 
- Krasnov K., Rovelli C., Black holes in full quantum gravity, Classical
  Quantum Gravity 26 (2009), 245009, 8 pages, arXiv:0905.4916.
 
- Lee J., Wald R.M., Local symmetries and constraints, J. Math. Phys.
  31 (1990), 725-743.
 
- Lewandowski J., Spacetimes admitting isolated horizons, Classical
  Quantum Gravity 17 (2000), L53-L59, gr-qc/9907058.
 
- Lewandowski J., Okoów A., Sahlmann H., Thiemann T., Uniqueness of
  diffeomorphism invariant states on holonomy-flux algebras, Comm.
  Math. Phys. 267 (2006), 703-733, gr-qc/0504147.
 
- Livine E.R., Terno D.R., Bulk entropy in loop quantum gravity, Nuclear
  Phys. B 794 (2008), 138-153, arXiv:0706.0985.
 
- Livine E.R., Terno D.R., Quantum black holes: entropy and entanglement on the
  horizon, Nuclear Phys. B 741 (2006), 131-161,
  gr-qc/0508085.
 
- Livine E.R., Terno D.R., The entropic boundary law in BF theory,
  Nuclear Phys. B 806 (2009), 715-734, arXiv:0805.2536.
 
- Lochan K., Vaz C., Canonical partition function of loop black holes,
  Phys. Rev. D 85 (2012), 104041, 9 pages,
  arXiv:1202.2301.
 
- Lochan K., Vaz C., Statistical analysis of entropy correction from topological
  defects in loop black holes, arXiv:1205.3974.
 
- Massar S., Parentani R., How the change in horizon area drives black hole
  evaporation, Nuclear Phys. B 575 (2000), 333-356,
  gr-qc/9903027.
 
- Meissner K.A., Black-hole entropy in loop quantum gravity, Classical
  Quantum Gravity 21 (2004), 5245-5251, gr-qc/0407052.
 
- Mitra P., Area law for black hole entropy in the SU(2) quantum geometry
  approach, Phys. Rev. D 85 (2012), 104025, 4 pages,
  arXiv:1107.4605.
 
- Modesto L., Disappearance of the black hole singularity in loop quantum
  gravity, Phys. Rev. D 70 (2004), 124009, 5 pages,
  gr-qc/0407097.
 
- Modesto L., Loop quantum black hole, Classical Quantum Gravity
  23 (2006), 5587-5601, gr-qc/0509078.
 
- Müller A., Experimental evidence of black holes, PoS Proc. Sci.
  (2006), PoS(P2GC), 017, 30 pages, astro-ph/0701228.
 
- Newman E.T., Couch E., Chinnapared K., Exton A., Prakash A., Torrence R.,
  Metric of a rotating, charged mass, J. Math. Phys. 6
  (1965), 918-919.
 
- Ooguri H., Sasakura N., Discrete and continuum approaches to three-dimensional
  quantum gravity, Modern Phys. Lett. A 6 (1991), 3591-3600,
  hep-th/9108006.
 
- Perez A., Introduction to loop quantum gravity and spin foams,
  gr-qc/0409061.
 
- Perez A., Pranzetti D., Static isolated horizons: SU(2) invariant phase
  space, quantization, and black hole entropy, Entropy 13
  (2011), 744-777, arXiv:1011.2961.
 
- Pranzetti D., Radiation from quantum weakly dynamical horizons in loop quantum
  gravity, Phys. Rev. Lett. 109 (2012), 011301, 5 pages,
  arXiv:1204.0702.
 
- Reid M.J., Is there a supermassive black hole at the center of the milky way?,
  Internat. J. Modern Phys. D 18 (2009), 889-910,
  arXiv:0808.2624.
 
- Rendall A.D., Reduction of the characteristic initial value problem to the
  Cauchy problem and its applications to the Einstein equations,
  Proc. Roy. Soc. London Ser. A 427 (1990), 221-239.
 
- Rovelli C., Black hole entropy from loop quantum gravity, Phys. Rev.
  Lett. 77 (1996), 3288-3291, gr-qc/9603063.
 
- Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics,
  Cambridge University Press, Cambridge, 2004.
 
- Rovelli C., Thiemann T., Immirzi parameter in quantum general relativity,
  Phys. Rev. D 57 (1998), 1009-1014, gr-qc/9705059.
 
- Sahlmann H., Black hole horizons from within loop quantum gravity,
  Phys. Rev. D 84 (2011), 044049, 12 pages,
  arXiv:1104.4691.
 
- Sahlmann H., Entropy calculation for a toy black hole, Classical
  Quantum Gravity 25 (2008), 055004, 14 pages, arXiv:0709.0076.
 
- Sahlmann H., Toward explaining black hole entropy quantization in loop quantum
  gravity, Phys. Rev. D 76 (2007), 104050, 7 pages,
  arXiv:0709.2433.
 
- Sahlmann H., Thiemann T., Chern-Simons expectation values and quantum horizons
  from loop quantum gravity and the Duflo map, Phys. Rev. Lett.
  108 (2012), 111303, 5 pages, arXiv:1109.5793.
 
- Smolin L., Linking topological quantum field theory and nonperturbative quantum
  gravity, J. Math. Phys. 36 (1995), 6417-6455,
  gr-qc/9505028.
 
- Strominger A., Black hole entropy from near-horizon microstates,
  J. High Energy Phys. 1998 (1998), no. 2, 009, 11 pages,
  hep-th/9712251.
 
- Strominger A., Vafa C., Microscopic origin of the Bekenstein-Hawking
  entropy, Phys. Lett. B 379 (1996), 99-104,
  hep-th/9601029.
 
- Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs
  on Mathematical Physics, Cambridge University Press, Cambridge, 2007.
 
- Thiemann T., Quantum spin dynamics. VIII. The master constraint,
  Classical Quantum Gravity 23 (2006), 2249-2265,
  gr-qc/0510011.
 
- Thiemann T., The Phoenix Project: master constraint programme for loop
  quantum gravity, Classical Quantum Gravity 23 (2006),
  2211-2247, gr-qc/0305080.
 
- Wald R.M., Black hole entropy is the Noether charge, Phys. Rev. D
  48 (1993), R3427-R3431, gr-qc/9307038.
 
- Wald R.M., General relativity, University of Chicago Press, Chicago, IL, 1984.
 
- Witten E., Quantum field theory and the Jones polynomial, Comm. Math.
  Phys. 121 (1989), 351-399.
 
 
 | 
 |