| 
 SIGMA 8 (2012), 055, 79 pages      arXiv:1112.1961     
https://doi.org/10.3842/SIGMA.2012.055 
Contribution to the Special Issue “Loop Quantum Gravity and Cosmology” 
Spin Foams and Canonical Quantization
Sergei Alexandrov a, b,  Marc Geiller c and Karim Noui d, c
 a) Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095, Montpellier, France
 b) CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095, Montpellier, France
 c) Laboratoire APC, Université Paris Diderot Paris 7, 75013 Paris, France
 d) LMPT, Université François Rabelais, Parc de Grandmont, 37200 Tours, France
 
 
Received January 30, 2012, in final form August 12, 2012; Published online August 19, 2012 
Abstract
 
This review is devoted to the analysis of the mutual consistency of the spin foam and canonical loop quantizations
in three and four spacetime dimensions.
In the three-dimensional context, where the two approaches are in good agreement,
we show how the canonical quantization à la Witten of Riemannian gravity with a positive cosmological constant
is related to the Turaev-Viro spin foam model, and how the Ponzano-Regge amplitudes are related
to the physical scalar product of  Riemannian loop quantum gravity without cosmological constant.
In the four-dimensional case, we recall a Lorentz-covariant formulation of loop quantum gravity
using projected spin networks, compare it with the new spin foam models, and identify interesting relations
and their pitfalls. Finally, we discuss the properties which a spin foam model is expected
to possess in order to be consistent with the canonical quantization,
and suggest a new model illustrating these results.
  
 Key words:
spin foam models; loop quantum gravity; canonical quantization. 
pdf (1118 kb)  
tex (581 kb)
 
 
References
 
- Alekseev A.Y., Integrability in the Hamiltonian Chern-Simons theory,
  St. Petersburg Math. J. 6 (1995), 241-253.
 
- Alekseev A.Y., Grosse H., Schomerus V., Combinatorial quantization of the
  Hamiltonian Chern-Simons theory. I, Comm. Math. Phys.
  172 (1995), 317-358, hep-th/9403066.
 
- Alekseev A.Y., Grosse H., Schomerus V., Combinatorial quantization of the
  Hamiltonian Chern-Simons theory. II, Comm. Math. Phys.
  174 (1996), 561-604, hep-th/9408097.
 
- Alekseev A.Y., Schomerus V., Representation theory of Chern-Simons
  observables, Duke Math. J. 85 (1996), 447-510,
  q-alg/9503016.
 
- Alesci E., Noui K., Sardelli F., Spin-foam models and the physical scalar
  product, Phys. Rev. D 78 (2008), 104009, 16 pages,
  arXiv:0807.3561.
 
- Alesci E., Rovelli C., Complete LQG propagator: difficulties with the
  Barrett-Crane vertex, Phys. Rev. D 76 (2007), 104012,
  22 pages, arXiv:0708.0883.
 
- Alexandrov S., Choice of connection in loop quantum gravity, Phys.
  Rev. D 65 (2002), 024011, 7 pages, gr-qc/0107071.
 
- Alexandrov S., New vertices and canonical quantization, Phys. Rev. D
  82 (2010), 024024, 9 pages, arXiv:1004.2260.
 
- Alexandrov S., Simplicity and closure constraints in spin foam models of
  gravity, Phys. Rev. D 78 (2008), 044033, 10 pages,
  arXiv:0802.3389.
 
- Alexandrov S., SO(4,C)-covariant Ashtekar-Barbero gravity
  and the Immirzi parameter, Classical Quantum Gravity 17
  (2000), 4255-4268, gr-qc/0005085.
 
- Alexandrov S., Spin foam model from canonical quantization, Phys.
  Rev. D 77 (2008), 024009, 15 pages, arXiv:0705.3892.
 
- Alexandrov S., Buffenoir E., Roche P., Plebanski theory and covariant canonical
  formulation, Classical Quantum Gravity 24 (2007),
  2809-2824, gr-qc/0612071.
 
- Alexandrov S., Kádár Z., Timelike surfaces in Lorentz covariant loop
  gravity and spin foam models, Classical Quantum Gravity 22
  (2005), 3491-3509, gr-qc/0501093.
 
- Alexandrov S., Krasnov K., Hamiltonian analysis of non-chiral Plebanski
  theory and its generalizations, Classical Quantum Gravity
  26 (2009), 055005, 10 pages, arXiv:0809.4763.
 
- Alexandrov S., Livine E.R., SU(2) loop quantum gravity seen from
  covariant theory, Phys. Rev. D 67 (2003), 044009, 15 pages,
  gr-qc/0209105.
 
- Alexandrov S., Roche P., Critical overview of loops and foams, Phys.
  Rep. 506 (2011), 41-86, arXiv:1009.4475.
 
- Alexandrov S., Vassilevich D., Area spectrum in Lorentz covariant loop
  gravity, Phys. Rev. D 64 (2001), 044023, 7 pages,
  gr-qc/0103105.
 
- Alexandrov S.Y., Vassilevich D.V., Path integral for the Hilbert-Palatini
  and Ashtekar gravity, Phys. Rev. D 58 (1998), 124029,
  13 pages, gr-qc/9806001.
 
- Ashtekar A., Fairhurst S., Willis J.L., Quantum gravity, shadow states and
  quantum mechanics, Classical Quantum Gravity 20 (2003),
  1031-1061, gr-qc/0207106.
 
- Ashtekar A., Husain V., Rovelli C., Samuel J., Smolin L., 2+1 quantum
  gravity as a toy model for the 3+1 theory, Classical Quantum
  Gravity 6 (1989), L185-L193.
 
- Ashtekar A., Lewandowski J., Background independent quantum gravity: a status
  report, Classical Quantum Gravity 21 (2004), R53-R152,
  gr-qc/0404018.
 
- Ashtekar A., Lewandowski J., Quantum theory of geometry. I. Area operators,
  Classical Quantum Gravity 14 (1997), A55-A81,
  gr-qc/9602046.
 
- Ashtekar A., Lewandowski J., Quantum theory of geometry. II. Volume
  operators, Adv. Theor. Math. Phys. 1 (1997), 388-429,
  gr-qc/9711031.
 
- Ashtekar A., Loll R., New loop representations for 2+1 gravity,
  Classical Quantum Gravity 11 (1994), 2417-2434,
  gr-qc/9405031.
 
- Baez J.C., Christensen J.D., Egan G., Asymptotics of 10j symbols,
  Classical Quantum Gravity 19 (2002), 6489-6513,
  gr-qc/0208010.
 
- Bais F.A., Muller N.M., Schroers B.J., Quantum group symmetry and particle
  scattering in (2+1)-dimensional quantum gravity, Nuclear Phys. B
  640 (2002), 3-45, hep-th/0205021.
 
- Balachandran A.P., Marmo G., Skagerstam B.S., Stern A., Gauge symmetries and
  fibre bundles: applications to particle dynamics, Lecture Notes in
  Physics, Vol. 188, Springer-Verlag, Berlin, 1983.
 
- Baratin A., Dittrich B., Oriti D., Tambornino J., Non-commutative flux
  representation for loop quantum gravity, Classical Quantum Gravity
  28 (2011), 175011, 19 pages, arXiv:1004.3450.
 
- Baratin A., Flori C., Thiemann T., The Holst spin foam model via cubulations,
  arXiv:0812.4055.
 
- Baratin A., Oriti D., Group field theory with noncommutative metric variables,
  Phys. Rev. Lett. 105 (2010), 221302, 4 pages,
  arXiv:1002.4723.
 
- Baratin A., Oriti D., Quantum simplicial geometry in the group field theory
  formalism: reconsidering the Barrett-Crane model, New J. Phys.
  13 (2011), 125011, 28 pages, arXiv:1108.1178.
 
- Barrett J.W., Crane L., A Lorentzian signature model for quantum general
  relativity, Classical Quantum Gravity 17 (2000),
  3101-3118, gr-qc/9904025.
 
- Barrett J.W., Crane L., Relativistic spin networks and quantum gravity,
  J. Math. Phys. 39 (1998), 3296-3302,
  gr-qc/9709028.
 
- Barrett J.W., Dowdall R.J., Fairbairn W.J., Gomes H., Hellmann F., Asymptotic
  analysis of the Engle-Pereira-Rovelli-Livine four-simplex
  amplitude, J. Math. Phys. 50 (2009), 112504, 30 pages,
  arXiv:0902.1170.
 
- Barrett J.W., Dowdall R.J., Fairbairn W.J., Hellmann F., Pereira R., Lorentzian
  spin foam amplitudes: graphical calculus and asymptotics, Classical
  Quantum Gravity 27 (2010), 165009, 34 pages, arXiv:0907.2440.
 
- Barrett J.W., Naish-Guzman I., The Ponzano-Regge model, Classical
  Quantum Gravity 26 (2009), 155014, 48 pages, arXiv:0803.3319.
 
- Barrett J.W., Naish-Guzman I., The Ponzano-Regge model and Reidemeister
  torsion, in On Recent Developments in Theoretical and Experimental General
  Relativity, Gravitation and Relativistic Field Theories, World Scientific
  Publishing, Singapore, 2006, 2782-2784, gr-qc/0612170.
 
- Barrett J.W., Steele C.M., Asymptotics of relativistic spin networks,
  Classical Quantum Gravity 20 (2003), 1341-1361,
  gr-qc/0209023.
 
- Barros e Sá N., Hamiltonian analysis of general relativity with the
  Immirzi parameter, Internat. J. Modern Phys. D 10 (2001),
  261-272, gr-qc/0006013.
 
- Bianchi E., The length operator in loop quantum gravity, Nuclear
  Phys. B 807 (2009), 591-624, arXiv:0806.4710.
 
- Bojowald M., Perez A., Spin foam quantization and anomalies, Gen.
  Relativity Gravitation 42 (2010), 877-907, gr-qc/0303026.
 
- Bonzom V., From lattice BF gauge theory to area–angle Regge calculus,
  Classical Quantum Gravity 26 (2009), 155020, 25 pages,
  arXiv:0903.0267.
 
- Bonzom V., Spin foam models and the Wheeler-DeWitt equation for the quantum
  4-simplex, Phys. Rev. D 84 (2011), 024009, 13 pages,
  arXiv:1101.1615.
 
- Bonzom V., Freidel L., The Hamiltonian constraint in 3d Riemannian loop
  quantum gravity, Classical Quantum Gravity 28 (2011),
  195006, 24 pages, arXiv:1101.3524.
 
- Bonzom V., Laddha A., Lessons from toy-models for the dynamics of loop quantum
  gravity, SIGMA 8 (2012), 009, 50 pages, arXiv:1110.2157.
 
- Bonzom V., Smerlak M., Bubble divergences from cellular cohomology,
  Lett. Math. Phys. 93 (2010), 295-305, arXiv:1004.5196.
 
- Bonzom V., Smerlak M., Bubble divergences from twisted cohomology,
  Comm. Math. Phys. 312 (2012), 399-426, arXiv:1008.1476.
 
- Bonzom V., Smerlak M., Bubble divergences: sorting out topology from cell
  structure, Ann. Henri Poincaré 13 (2012), 185-208,
  arXiv:1103.3961.
 
- Buffenoir E., Henneaux M., Noui K., Roche P., Hamiltonian analysis of
  Plebanski theory, Classical Quantum Gravity 21 (2004),
  5203-5220, gr-qc/0404041.
 
- Buffenoir E., Noui K., Roche P., Hamiltonian quantization of Chern-Simons
  theory with SL(2,C) group, Classical Quantum
  Gravity 19 (2002), 4953-5015, hep-th/0202121.
 
- Capovilla R., Dell J., Jacobson T., Mason L., Self-dual 2-forms and
  gravity, Classical Quantum Gravity 8 (1991), 41-57.
 
- Carlip S., Quantum gravity in 2+1 dimensions, Cambridge Monographs on
  Mathematical Physics, Cambridge University Press, Cambridge, 1998.
 
- Chari V., Pressley A., A guide to quantum groups, Cambridge University Press,
  Cambridge, 1995.
 
- Cianfrani F., Montani G., Towards loop quantum gravity without the time gauge,
  Phys. Rev. Lett. 102 (2009), 091301, 4 pages,
  arXiv:0811.1916.
 
- Conrady F., Freidel L., Semiclassical limit of 4-dimensional spin foam models,
  Phys. Rev. D 78 (2008), 104023, 18 pages,
  arXiv:0809.2280.
 
- Conrady F., Hnybida J., A spin foam model for general Lorentzian
  4-geometries, Classical Quantum Gravity 27 (2010), 185011,
  23 pages, arXiv:1002.1959.
 
- Crane L., Perez A., Rovelli C., Perturbative finiteness in spin-foam quantum
  gravity, Phys. Rev. Lett. 87 (2001), 181301, 4 pages.
 
- De Pietri R., Freidel L., so(4) Pleba\'nski action and relativistic
  spin-foam model, Classical Quantum Gravity 16 (1999),
  2187-2196, gr-qc/9804071.
 
- de Sousa Gerbert P., On spin and (quantum) gravity in 2+1 dimensions,
  Nuclear Phys. B 346 (1990), 440-472.
 
- Deser S., Jackiw R., Three-dimensional cosmological gravity: dynamics of
  constant curvature, Ann. Physics 153 (1984), 405-416.
 
- Deser S., Jackiw R., 't Hooft G., Three-dimensional Einstein gravity:
  dynamics of flat space, Ann. Physics 152 (1984), 220-235.
 
- Ding Y., Rovelli C., The physical boundary Hilbert space and volume operator
  in the Lorentzian new spin-foam theory, Classical Quantum Gravity
  27 (2010), 205003, 11 pages, arXiv:1006.1294.
 
- Dupuis M., Livine E.R., Lifting SU(2) spin networks to projected spin networks,
  Phys. Rev. D 82 (2010), 064044, 11 pages,
  arXiv:1008.4093.
 
- Elitzur S., Moore G., Schwimmer A., Seiberg N., Remarks on the canonical
  quantization of the Chern-Simons-Witten theory, Nuclear
  Phys. B 326 (1989), 108-134.
 
- Engle J., Han M., Thiemann T., Canonical path integral measures for Holst and
  Plebanski gravity. I. Reduced phase space derivation, Classical
  Quantum Gravity 27 (2010), 245014, 29 pages, arXiv:0911.3433.
 
- Engle J., Livine E., Pereira R., Rovelli C., LQG vertex with finite Immirzi
  parameter, Nuclear Phys. B 799 (2008), 136-149,
  arXiv:0711.0146.
 
- Engle J., Pereira R., Rovelli C., Flipped spinfoam vertex and loop gravity,
  Nuclear Phys. B 798 (2008), 251-290, arXiv:0708.1236.
 
- Engle J., Pereira R., Rovelli C., Loop-quantum-gravity vertex amplitude,
  Phys. Rev. Lett. 99 (2007), 161301, 4 pages,
  arXiv:0705.2388.
 
- Fairbairn W.J., Meusburger C., Quantum deformation of two four-dimensional spin
  foam models, J. Math. Phys. 53 (2012), 022501, 37 pages,
  arXiv:1012.4784.
 
- Fock V.V., Rosly A.A., Poisson structure on moduli of flat connections on
  Riemann surfaces and the r-matrix, in Moscow Seminar in
  Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, Vol. 191,
  Amer. Math. Soc., Providence, RI, 1999, 67-86, math.QA/9802054.
 
- Foxon T.J., Spin networks, Turaev-Viro theory and the loop representation,
  Classical Quantum Gravity 12 (1995), 951-964,
  gr-qc/9408013.
 
- Freidel L., Group field theory: an overview, Internat. J. Theoret.
  Phys. 44 (2005), 1769-1783, hep-th/0505016.
 
- Freidel L., Geiller M., Ziprick J., Continuous formulation of the loop quantum
  gravity phase space, arXiv:1110.4833.
 
- Freidel L., Gurau R., Oriti D., Group field theory renormalization in the 3D
  case: power counting of divergences, Phys. Rev. D 80
  (2009), 044007, 20 pages, arXiv:0905.3772.
 
- Freidel L., Krasnov K., A new spin foam model for 4D gravity,
  Classical Quantum Gravity 25 (2008), 125018, 36 pages,
  arXiv:0708.1595.
 
- Freidel L., Krasnov K., Puzio R., BF description of higher-dimensional gravity
  theories, Adv. Theor. Math. Phys. 3 (1999), 1289-1324,
  hep-th/9901069.
 
- Freidel L., Livine E.R., 3D quantum gravity and effective noncommutative
  quantum field theory, Phys. Rev. Lett. 96 (2006), 221301,
  4 pages, hep-th/0512113.
 
- Freidel L., Livine E.R., Ponzano-Regge model revisited. III. Feynman
  diagrams and effective field theory, Classical Quantum Gravity
  23 (2006), 2021-2061, hep-th/0502106.
 
- Freidel L., Livine E.R., Spin networks for noncompact groups, J. Math.
  Phys. 44 (2003), 1322-1356, hep-th/0205268.
 
- Freidel L., Livine E.R., Rovelli C., Spectra of length and area in (2+1)
  Lorentzian loop quantum gravity, Classical Quantum Gravity
  20 (2003), 1463-1478, gr-qc/0212077.
 
- Freidel L., Louapre D., Asymptotics of 6j and 10j symbols,
  Classical Quantum Gravity 20 (2003), 1267-1294,
  hep-th/0209134.
 
- Freidel L., Louapre D., Nonperturbative summation over 3D discrete
  topologies, Phys. Rev. D 68 (2003), 104004, 16 pages,
  hep-th/0211026.
 
- Freidel L., Louapre D., Ponzano-Regge model revisited. I. Gauge fixing,
  observables and interacting spinning particles, Classical Quantum
  Gravity 21 (2004), 5685-5726, hep-th/0401076.
 
- Freidel L., Louapre D., Ponzano-Regge model revisited. II. Equivalence with
  Chern-Simons, gr-qc/0410141.
 
- Freyd P., Yetter D., Hoste J., Lickorish W.B.R., Millett K., Ocneanu A., A new
  polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 239-246.
 
- Geiller M., Lachièze-Rey M., Noui K., A new look at Lorentz-covariant loop
  quantum gravity, Phys. Rev. D 84 (2011), 044002, 19 pages,
  arXiv:1105.4194.
 
- Geiller M., Lachièze-Rey M., Noui K., Sardelli F., A Lorentz-covariant
  connection for canonical gravity, SIGMA 7 (2011), 083,
  10 pages, arXiv:1103.4057.
 
- Geiller M., Noui K., Testing the imposition of the spin foam simplicity
  constraints, Classical Quantum Gravity 29 (2012), 135008,
  28 pages, arXiv:1112.1965.
 
- Giulini D., On the configuration space topology in general relativity,
  Helv. Phys. Acta 68 (1995), 86-111,
  gr-qc/9301020.
 
- Goldman W.M., The symplectic nature of fundamental groups of surfaces,
  Adv. Math. 54 (1984), 200-225.
 
- Gott III J.R., Closed timelike curves produced by pairs of moving cosmic
  strings: exact solutions, Phys. Rev. Lett. 66 (1991),
  1126-1129.
 
- Grot N., Rovelli C., Moduli-space structure of knots with intersections,
  J. Math. Phys. 37 (1996), 3014-3021,
  gr-qc/9604010.
 
- Han M., 4-dimensional spin-foam model with quantum Lorentz group,
  J. Math. Phys. 52 (2011), 072501, 22 pages,
  arXiv:1012.4216.
 
- Han M., Canonical path-integral measures for Holst and Plebanski gravity.
  II. Gauge invariance and physical inner product, Classical
  Quantum Gravity 27 (2010), 245015, 39 pages, arXiv:0911.3436.
 
- Henneaux M., Slavnov A.A., A note on the path integral for systems with primary
  and secondary second class constraints, Phys. Lett. B 338
  (1994), 47-50, hep-th/9406161.
 
- Holst S., Barbero's Hamiltonian derived from a generalized
  Hilbert-Palatini action, Phys. Rev. D 53 (1996),
  5966-5969, gr-qc/9511026.
 
- Horowitz G.T., Exactly soluble diffeomorphism invariant theories, Comm.
  Math. Phys. 125 (1989), 417-437.
 
- Jones V.F.R., A new knot polynomial and von Neumann algebras, Notices
  Amer. Math. Soc. 33 (1986), 219-225.
 
- Joung E., Mourad J., Noui K., Three dimensional quantum geometry and deformed
  symmetry, J. Math. Phys. 50 (2009), 052503, 29 pages,
  arXiv:0806.4121.
 
- Kaminski W., Kisielowski M., Lewandowski J., The EPRL intertwiners and
  corrected partition function, Classical Quantum Gravity 27
  (2010), 165020, 15 pages, arXiv:0912.0540.
 
- Koornwinder T.H., Bais F.A., Muller N.M., Tensor product representations of the
  quantum double of a compact group, Comm. Math. Phys. 198
  (1998), 157-186, q-alg/9712042.
 
- Koornwinder T.H., Muller N.M., The quantum double of a (locally) compact group,
  J. Lie Theory 7 (1997), 101-120, q-alg/9605044.
 
- Labastida J.M.F., Knot invariants and Chern-Simons theory, in European
  Congress of Mathematics, Vol. II (Barcelona, 2000), Progr.
  Math., Vol. 202, Birkhäuser, Basel, 2001, 467-477,
  hep-th/0007152.
 
- Labastida J.M.F., Ramallo A.V., Operator formalism for Chern-Simons
  theories, Phys. Lett. B 227 (1989), 92-102.
 
- Liu L., Montesinos M., Perez A., Topological limit of gravity admitting an
SU(2) connection formulation, Phys. Rev. D 81
  (2010), 064033, 9 pages, arXiv:0906.4524.
 
- Livine E.R., Projected spin networks for Lorentz connection: linking spin
  foams and loop gravity, Classical Quantum Gravity 19
  (2002), 5525-5541, gr-qc/0207084.
 
- Livine E.R., Ryan J.P., A note on B-observables in Ponzano-Regge 3D
  quantum gravity, Classical Quantum Gravity 26 (2009),
  035013, 19 pages, arXiv:0808.0025.
 
- Livine E.R., Speziale S., Consistently solving the simplicity constraints for
  spinfoam quantum gravity, Europhys. Lett. 81 (2008), 50004,
  6 pages, arXiv:0708.1915.
 
- Magnen J., Noui K., Rivasseau V., Smerlak M., Scaling behavior of
  three-dimensional group field theory, Classical Quantum Gravity
  26 (2009), 185012, 25 pages, arXiv:0906.5477.
 
- Marolf D.M., Loop representations for 2+1 gravity on a torus,
  Classical Quantum Gravity 10 (1993), 2625-2647,
  gr-qc/9303019.
 
- Matschull H.J., The phase space structure of multi-particle models in 2+1
  gravity, Classical Quantum Gravity 18 (2001), 3497-3560,
  gr-qc/0103084.
 
- Meusburger C., Noui K., Combinatorial quantisation of the Euclidean torus
  universe, Nuclear Phys. B 841 (2010), 463-505,
  arXiv:1007.4615.
 
- Meusburger C., Schroers B.J., Boundary conditions and symplectic structure in
  the Chern-Simons formulation of (2+1)-dimensional gravity,
  Classical Quantum Gravity 22 (2005), 3689-3724,
  gr-qc/0505071.
 
- Meusburger C., Schroers B.J., Mapping class group actions in Chern-Simons
  theory with gauge group G×g*, Nuclear Phys. B
  706 (2005), 569-597, hep-th/0312049.
 
- Meusburger C., Schroers B.J., Poisson structure and symmetry in the
  Chern-Simons formulation of (2+1)-dimensional gravity,
  Classical Quantum Gravity 20 (2003), 2193-2233,
  gr-qc/0301108.
 
- Meusburger C., Schroers B.J., The quantisation of Poisson structures arising
  in Chern-Simons theory with gauge group G×g*,
  Adv. Theor. Math. Phys. 7 (2003), 1003-1043,
  hep-th/0310218.
 
- Mikovic A., Vojinovic M., Effective action for EPRL/FK spin foam models,
  J. Phys. Conf. Ser. 360 (2012), 012049, 4 pages,
  arXiv:1110.6114.
 
- Noui K., Three-dimensional loop quantum gravity: particles and the quantum
  double, J. Math. Phys. 47 (2006), 102501, 30 pages,
  gr-qc/0612144.
 
- Noui K., Three-dimensional loop quantum gravity: towards a self-gravitating
  quantum field theory, Classical Quantum Gravity 24 (2007),
  329-360, gr-qc/0612145.
 
- Noui K., Perez A., Three-dimensional loop quantum gravity: coupling to point
  particles, Classical Quantum Gravity 22 (2005), 4489-4513,
  gr-qc/0402111.
 
- Noui K., Perez A., Three-dimensional loop quantum gravity: physical scalar
  product and spin-foam models, Classical Quantum Gravity 22
  (2005), 1739-1761, gr-qc/0402110.
 
- Noui K., Perez A., Pranzetti D., Canonical quantization of non-commutative
  holonomies in 2+1 loop quantum gravityr, J. High Energy Phys.
  2011 (2011), no. 10, 036, 22 pages, arXiv:1105.0439.
 
- Noui K., Roche P., Cosmological deformation of Lorentzian spin foam models,
  Classical Quantum Gravity 20 (2003), 3175-3213,
  gr-qc/0211109.
 
- Oriti D., The group field theory approach to quantum gravity: some recent
  results, arXiv:0912.2441.
 
- Perez A., Finiteness of a spinfoam model for Euclidean quantum general
  relativity, Nuclear Phys. B 599 (2001), 427-434,
  gr-qc/0011058.
 
- Perez A., Introduction to loop quantum gravity and spin foams,
  gr-qc/0409061.
 
- Perez A., Pranzetti D., On the regularization of the constraint algebra of
  quantum gravity in 2+1 dimensions with a nonvanishing cosmological
  constant, Classical Quantum Gravity 27 (2010), 145009,
  20 pages, arXiv:1001.3292.
 
- Perez A., Rovelli C., (3+1)-dimensional spin foam model of quantum gravity
  with spacelike and timelike components, Phys. Rev. D 64
  (2001), 064002, 12 pages, gr-qc/0011037.
 
- Perez A., Rovelli C., A spin foam model without bubble divergences,
  Nuclear Phys. B 599 (2001), 255-282,
  gr-qc/0006107.
 
- Perez A., Rovelli C., Spin foam model for Lorentzian general relativity,
  Phys. Rev. D 63 (2001), 041501, 5 pages,
  gr-qc/0009021.
 
- Plebanski J.F., On the separation of Einsteinian substructures,
  J. Math. Phys. 18 (1977), 2511-2520.
 
- Ponzano G., Regge T., Semiclassical limit of Racah coefficients, in Spectroscopy and Group Theoretical
  Methods in Physics, Editors F. Block et al., North Holland, Amsterdam, 1968,
  1-58.
 
- Reisenberger M.P., On relativistic spin network vertices, J. Math.
  Phys. 40 (1999), 2046-2054, gr-qc/9809067.
 
- Reisenberger M.P., Rovelli C., "Sum over surfaces" form of loop quantum
  gravity, Phys. Rev. D 56 (1997), 3490-3508,
  gr-qc/9612035.
 
- Reshetikhin N., Turaev V.G., Invariants of 3-manifolds via link polynomials
  and quantum groups, Invent. Math. 103 (1991), 547-597.
 
- Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics,
  Cambridge University Press, Cambridge, 2004.
 
- Rovelli C., Smolin L., Discreteness of area and volume in quantum gravity,
  Nuclear Phys. B 442 (1995), 593-619,
  gr-qc/9411005.
 
- Rovelli C., Speziale S., Lorentz covariance of loop quantum gravity,
  Phys. Rev. D 83 (2011), 104029, 6 pages,
  arXiv:1012.1739.
 
- Sahlmann H., Thiemann T., Chern-Simons theory, Stokes' theorem, and the
  Duflo map, J. Geom. Phys. 61 (2011), 1104-1121,
  arXiv:1101.1690.
 
- Samuel J., Is Barbero's Hamiltonian formulation a gauge theory of
  Lorentzian gravity?, Classical Quantum Gravity 17 (2000),
  L141-L148, gr-qc/0005095.
 
- Thiemann T., A length operator for canonical quantum gravity, J. Math.
  Phys. 39 (1998), 3372-3392, gr-qc/9606092.
 
- Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs
  on Mathematical Physics, Cambridge University Press, Cambridge, 2007.
 
- Thiemann T., Quantum spin dynamics (QSD). IV. 2+1 Euclidean quantum
  gravity as a model to test 3+1 Lorentzian quantum gravity,
  Classical Quantum Gravity 15 (1998), 1249-1280,
  gr-qc/9705018.
 
- Thiemann T., Quantum spin dynamics (QSD). VII. Symplectic structures and
  continuum lattice formulations of gauge field theories, Classical
  Quantum Gravity 18 (2001), 3293-3338, hep-th/0005232.
 
- Turaev V., Virelizier A., On two approaches to 3-dimensional TQFTs,
  arXiv:1006.3501.
 
- Turaev V.G., Viro O.Y., State sum invariants of 3-manifolds and quantum
  6j-symbols, Topology 31 (1992), 865-902.
 
- Vassiliev V.A., Cohomology of knot spaces, in Theory of Singularities and its
  Applications, Adv. Soviet Math., Vol. 1, Amer. Math. Soc.,
  Providence, RI, 1990, 23-69.
 
- Witten E., 2+1-dimensional gravity as an exactly soluble system,
  Nuclear Phys. B 311 (1988), 46-78.
 
- Witten E., Analytic continuation of Chern-Simons theory, in
  Chern-Simons Gauge Theory: 20 Years After, AMS/IP Stud. Adv.
  Math., Vol. 50, Amer. Math. Soc., Providence, RI, 2011, 347-446,
  arXiv:1001.2933.
 
- Witten E., Quantum field theory and the Jones polynomial, Comm. Math.
  Phys. 121 (1989), 351-399.
 
 
 | 
 |