| 
 SIGMA 8 (2012), 058, 15 pages       arXiv:1205.6036      
https://doi.org/10.3842/SIGMA.2012.058 
Contribution to the Special Issue “Geometrical Methods in Mathematical Physics” 
Hidden Symmetries of Euclideanised Kerr-NUT-(A)dS Metrics in Certain Scaling Limits
Mihai Visinescu a and Eduard Vîlcu b, c
 a) National Institute for Physics and Nuclear Engineering, Department of Theoretical Physics, P.O. Box M.G.-6, Magurele, Bucharest, Romania
 b) Petroleum-Gas University of Ploieşti, Department of Mathematical Economics, Bulevardul Bucureşti, Nr. 39, Ploieşti 100680, Romania
 c) University of Bucharest, Faculty of Mathematics and Computer Science,  Research Center in Geometry, Topology and Algebra, Str. Academiei, Nr. 14, Sector 1, Bucharest 70109, Romania
 
 
Received May 29, 2012, in final form July 23, 2012; Published online August 27, 2012 
Abstract
 
The hidden symmetries of higher dimensional Kerr-NUT-(A)dS metrics
are investigated. In  certain scaling limits these metrics are related
to the Einstein-Sasaki ones. The complete set of Killing-Yano tensors of
the Einstein-Sasaki spaces are presented. For this purpose the
Killing forms of the Calabi-Yau cone over the Einstein-Sasaki manifold
are constructed. Two new Killing forms on  Einstein-Sasaki manifolds
are identified associated with the complex volume form of the cone
manifolds. Finally the Killing forms on mixed 3-Sasaki manifolds are
briefly described.
  
 Key words:
Killing forms; Einstein-Sasaki space; Calabi-Yau spaces. 
pdf (389 kb)  
tex (26 kb)
 
 
References
 
- Acharya B.S., Figueroa-O'Farrill J.M., Hull C.M., Spence B., Branes at conical
  singularities and holography, Adv. Theor. Math. Phys. 2
  (1998), 1249-1286, hep-th/9808014.
 
- Agricola I., Friedrich T., Killing spinors in supergravity with 4-fluxes,
  Classical Quantum Gravity 20 (2003), 4707-4717,
  math.DG/0307360.
 
- Alekseevsky D.V., Cortés V., Galaev A.S., Leistner T., Cones over
  pseudo-Riemannian manifolds and their holonomy, J. Reine Angew.
  Math. 635 (2009), 23-69, arXiv:0707.3063.
 
- Ballmann W., Lectures on Kähler manifolds, ESI Lectures in Mathematics and
  Physics, European Mathematical Society (EMS), Zürich, 2006.
 
- Bär C., Real Killing spinors and holonomy, Comm. Math. Phys.
  154 (1993), 509-521.
 
- Besse A.L., Einstein manifolds, Ergebnisse der Mathematik und ihrer
  Grenzgebiete (3), Vol. 10, Springer-Verlag, Berlin, 1987.
 
- Blair D.E., Contact manifolds in Riemannian geometry, Lecture Notes
  in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976.
 
- Blažć N., Paraquaternionic projective space and pseudo-Riemannian
  geometry, Publ. Inst. Math. (Beograd) (N.S.) 60 (1996),
  101-107.
 
- Boyer C., Galicki K., 3-Sasakian manifolds, in Surveys in Differential
  Geometry: Essays on Einstein Manifolds, Surv. Differ. Geom.,
  Vol. VI, Int. Press, Boston, MA, 1999, 123-184, hep-th/9810250.
 
- Boyer C.P., Galicki K., Sasakian geometry, holonomy, and supersymmetry, in
  Handbook of pseudo-Riemannian geometry and supersymmetry, IRMA
  Lect. Math. Theor. Phys., Vol. 16, Eur. Math. Soc., Zürich, 2010, 39-83,
  math.DG/0703231.
 
- Boyer C.P., Galicki K., Mann B.M., The geometry and topology of
  3-Sasakian manifolds, J. Reine Angew. Math. 455
  (1994), 183-220.
 
- Caldarella A.V., Pastore A.M., Mixed 3-Sasakian structures and curvature,
  Ann. Polon. Math. 96 (2009), 107-125, arXiv:0803.1953.
 
- Cariglia M., Krtouš P., Kubizňák D., Dirac equation in
  Kerr-NUT-(A)dS spacetimes: intrinsic characterization of separability in all
  dimensions, Phys. Rev. D 84 (2011), 024008, 11 pages,
  arXiv:1104.4123.
 
- Carter B., Killing tensor quantum numbers and conserved currents in curved
  space, Phys. Rev. D 16 (1977), 3395-3414.
 
- Carter B., McLenaghan R.G., Generalized total angular momentum operator for the
  Dirac equation in curved space-time, Phys. Rev. D 19
  (1979), 1093-1097.
 
- Chen W., Lü H., Pope C.N., General Kerr-NUT-AdS metrics in all
  dimensions, Classical Quantum Gravity 23 (2006),
  5323-5340, hep-th/0604125.
 
- Cortés V., Mayer C., Mohaupt T., Saueressig F., Special geometry of
  Euclidean supersymmetry. II. Hypermultiplets and the c-map,
  J. High Energy Phys. 2005 (2005), no. 6, 025, 37 pages,
  hep-th/0503094.
 
- Cvetič M., Lü H., Page D.N., Pope C.N., New Einstein-Sasaki and
  Einstein spaces from Kerr-de Sitter, J. High Energy Phys.
  2009 (2009), no. 7, 082, 25 pages, hep-th/0505223.
 
- Dunajski M., West S., Anti-self-dual conformal structures in neutral signature,
  in Recent developments in pseudo-Riemannian geometry, ESI Lect. Math.
  Phys., Eur. Math. Soc., Zürich, 2008, 113-148, math.DG/0610280.
 
- Emparan R., Reall H.S., Black holes in higher dimensions, Living Rev.
  Relativ. 11 (2008), 6, 87 pages, arXiv:0801.3471.
 
- García-Río E., Matsushita Y., Vázquez-Lorenzo R.,
  Paraquaternionic Kähler manifolds, Rocky Mountain J. Math.
  31 (2001), 237-260.
 
- Gibbons G.W., Hartnoll S.A., Pope C.N., Bohm and Einstein-Sasaki metrics,
  black holes, and cosmological event horizons, Phys. Rev. D
  67 (2003), 084024, 24 pages, hep-th/0208031.
 
- Gibbons G.W., Rychenkova P., Cones, tri-Sasakian structures and
  superconformal invariance, Phys. Lett. B 443 (1998),
  138-142, hep-th/9809158.
 
- Houri T., Kubizňák D., Warnick C.M., Yasui Y., Generalized hidden
  symmetries and the Kerr-Sen black hole, J. High Energy Phys.
  2010 (2010), no. 7, 055, 33 pages, arXiv:1004.1032.
 
- Houri T., Kubizňák D., Warnick C., Yasui Y., Symmetries of the
  Dirac operator with skew-symmetric torsion, Classical Quantum
  Gravity 27 (2010), 185019, 16 pages, arXiv:1002.3616.
 
- Hull C.M., Actions for (2,1) sigma models and strings, Nuclear
  Phys. B 509 (1998), 252-272, hep-th/9702067.
 
- Hull C.M., Duality and the signature of space-time, J. High Energy
  Phys. 1998 (1998), no. 11, 017, 36 pages, hep-th/9807127.
 
- Ianuş S., Mazzocco R., Vîlcu G.E., Real lightlike hypersurfaces of
  paraquaternionic Kähler manifolds, Mediterr. J. Math. 3
  (2006), 581-592.
 
- Ianuş S., Vîlcu G.E., Paraquaternionic manifolds and mixed
  3-structures, in Differential Geometry, World Sci. Publ., Hackensack, NJ,
  2009, 276-285.
 
- Ianuş S., Vîlcu G.E., Some constructions of almost
  para-hyperhermitian structures on manifolds and tangent bundles,
  Int. J. Geom. Methods Mod. Phys. 5 (2008), 893-903,
  arXiv:0707.3360.
 
- Ianuş S., Visinescu M., Vîlcu G.E., Conformal Killing-Yano
  tensors on manifolds with mixed 3-structures, SIGMA 5
  (2009), 022, 12 pages, arXiv:0902.3968.
 
- Kobayashi S., Nomizu K., Foundations of differential geometry, Vol. I,
  Interscience Publishers, New York - London, 1963.
 
- Konishi M., On manifolds with Sasakian 3-structure over quaternion
  Kaehler manifolds, Kōdai Math. Sem. Rep. 26 (1974/75),
  194-200.
 
- Krtouš P., Kubizňák D., Page D.N., Vasudevan M., Constants of
  geodesic motion in higher-dimensional black-hole spacetimes, Phys.
  Rev. D 76 (2007), 084034, 8 pages, arXiv:0707.0001.
 
- Kubizňák D., On the supersymmetric limit of Kerr-NUT-AdS
  metrics, Phys. Lett. B 675 (2009), 110-115,
  arXiv:0902.1999.
 
- Kubizňák D., Frolov V.P., Stationary strings and branes in the
  higher-dimensional Kerr-NUT-(A)dS spacetimes, J. High Energy
  Phys. 2008 (2008), no. 2, 007, 14 pages, arXiv:0711.2300.
 
- Kuo Y., On almost contact 3-structure, Tôhoku Math. J.
  22 (1970), 325-332.
 
- Martelli D., Sparks J., Toric Sasaki-Einstein metrics on S2×S3, Phys. Lett. B 621 (2005), 208-212,
  hep-th/0505027.
 
- Ohnita Y., Stability and rigidity of special Lagrangian cones over certain
  minimal Legendrian orbits, Osaka J. Math. 44 (2007),
  305-334.
 
- Ooguri H., Vafa C., Geometry of N=2 strings, Nuclear Phys. B
  361 (1991), 469-518.
 
- Oota T., Yasui Y., Separability of Dirac equation in higher dimensional
  Kerr-NUT-de Sitter spacetime, Phys. Lett. B 659
  (2008), 688-693, arXiv:0711.0078.
 
- Oota T., Yasui Y., Separability of gravitational perturbation in generalized
  Kerr-NUT-de Sitter space-time, Internat. J. Modern Phys. A
  25 (2010), 3055-3094, arXiv:0812.1623.
 
- Page D.N., Kubizňák D., Vasudevan M., Krtouš P., Complete
  integrability of geodesic motion in general higher-dimensional rotating
  black-hole spacetimes, Phys. Rev. Lett. 98 (2007), 061102,
  4 pages, hep-th/0611083.
 
- Sasaki S., On differentiable manifolds with certain structures which are
  closely related to almost contact structure. I, Tôhoku Math. J.
  12 (1960), 459-476.
 
- Satō I., On a structure similar to the almost contact structure,
  Tensor (N.S.) 30 (1976), 219-224.
 
- Semmelmann U., Conformal Killing forms on Riemannian manifolds,
  Math. Z. 245 (2003), 503-527, math.DG/0206117.
 
- Sergyeyev A., Krtouš P., Complete set of commuting symmetry operators for
  the Klein-Gordon equation in generalized higher-dimensional
  Kerr-NUT-(A)dS spacetimes, Phys. Rev. D 77 (2008),
  044033, 6 pages, arXiv:0711.4623.
 
- Sharfuddin A., Shahid M.H., Hypersurfaces of almost quaternion manifolds,
  Soochow J. Math. 20 (1994), 297-308.
 
- Sparks J., Sasaki-Einstein manifolds, in Geometry of Special Holonomy and Related Topics,
  Surv. Differ. Geom., Vol. 16, Int. Press, Somerville, MA, 2011,
  265-324, arXiv:1004.2461.
 
- Vîlcu G.E., Voicu R.C., Curvature properties of pseudo-sphere bundles over
  paraquaternionic manifolds, Int. J. Geom. Methods Mod. Phys.
  9 (2012), 1250024, 23 pages, arXiv:1107.5260.
 
- Yano K., Some remarks on tensor fields and curvature, Ann. of
  Math. (2) 55 (1952), 328-347.
 
 
 | 
 |