| 
 SIGMA 8 (2012), 060, 15 pages       arXiv:1209.2497      
https://doi.org/10.3842/SIGMA.2012.060 
Contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions” 
Ladder Operators for Quantum Systems Confined by Dihedral Angles
Eugenio Ley-Koo a and Guo-Hua Sun b
 a) Instituto de Física, Universidad Nacional Autónoma de México, México
 b) Centro Universitario Valle de Chalco, Universidad Autónoma del Estado de México, México
 
 
Received June 29, 2012, in final form September 07, 2012; Published online September 12, 2012 
Abstract
 
We report the identification and construction of raising and lowering
operators for the complete eigenfunctions of isotropic harmonic oscillators
confined by dihedral angles, in circular cylindrical and spherical
coordinates; as well as for the hydrogen atom in the same situation of
confinement, in spherical, parabolic and prolate spheroidal coordinates.
The actions of such operators on any eigenfunction are examined in the
respective coordinates, illustrating the possibility of generating the
complete bases of eigenfunctions in the respective coordinates for both
physical systems. The relationships between the eigenfunctions in each
pair of coordinates, and with the same eigenenergies are also illustrated.
  
 Key words:
Ladder operators; harmonic oscillator; hydrogen atom; confinement in dihedral angles. 
pdf (400 kb)  
tex (21 kb)
 
 
References
 
- Abramowitz M., Stegun I.A., Handbook of mathematical functions, with formulas,
  graphs, and mathematical tables, Dover Publications, New York, 1972.
 
- Bander M., Itzykson C., Group theory and the hydrogen atom. I, Rev.
  Modern Phys. 38 (1966), 330-345.
 
- Bander M., Itzykson C., Group theory and the hydrogen atom. II, Rev.
  Modern Phys. 38 (1966), 346-358.
 
- Bargmann V., Zur Theorie des Wasserstoffatoms, Bemerkungen zur gleichnamigen
  Arbeit von V. Fock, Z. Phys. 99 (1936), 576-582.
 
- Cooper I.L., An integrated approach to ladder and shift operators for the
  Morse oscillator, radial Coulomb and radial oscillator potentials,
  J. Phys. A: Math. Gen. 26 (1993), 1601-1623.
 
- Coulson C.A., Joseph A., Spheroidal wave functions for the hydrogen atom,
  Proc. Phys. Soc. 90 (1967), 887-893.
 
- Dong S.H., Factorization method in quantum mechanics, Fundamental
  Theories of Physics, Vol. 150, Springer, Dordrecht, 2007.
 
- Dong S.H., Interbasis expansions for isotropic harmonic oscillator,
  Phys. Lett. A 376 (2012), 1262-1268.
 
- Dong S.H., Ma Z.Q., The hidden symmetry for a quantum system with an infinitely
  deep square-well potential, Amer. J. Phys. 70 (2002),
  520-521.
 
- Fock V., Zur Theorie des Wasserstoffatoms, Z. Phys. 98
  (1935), 145-154.
 
- Gutiérrez-Vega J.C., López-Mariscal C., Nondiffracting vortex beams
  with continuous orbital angular momentum order dependence, J. Opt. A:
  Pure Appl. Opt. 10 (2008), 015009, 8 pages.
 
- Hakobyan Y.M., Kibler M., Pogosyan G.S., Sissakian A.N., Generalized
  oscillator: invariance algebra and interbasis expansions, Phys.
  Atomic Nuclei 61 (1998), 1782-1788, quant-ph/9712014.
 
- Kalnins E.G., Miller Jr. W., Winternitz P., The group O(4),
  separation of variables and the hydrogen atom, SIAM J. Appl. Math.
  30 (1976), 630-664.
 
- Kibler M., Mardoyan L.G., Pogosyan G.S., On a generalized oscillator system:
  interbasis expansions, Int. J. Quantum Chem. 63 (1997),
  133-148, quant-ph/9608027.
 
- Ley-Koo E., The hydrogen atom confined in semi-infinite spaces limited by
  conoidal boundaries, Adv. Quantum Chem. 57 (2009), 79-122.
 
- Louck J.D., Moshinsky M., Wolf K.B., Canonical transformations and accidental
  degeneracy. II. The isotropic oscillator in a sector, J. Math.
  Phys. 14 (1973), 696-700.
 
- Mardoyan L.G., Pogosyan G.S., Sissakian A.N., Ter-Antonyan V.M., Hidden
  symmetry, separation of variables and interbasis expansions in the
  two-dimensional hydrogen atom, J. Phys. A: Math. Gen. 18
  (1985), 455-466.
 
- Mardoyan L.G., Pogosyan G.S., Sissakian A.N., Ter-Antonyan V.M., Spheroidal
  analysis of the hydrogen atom, J. Phys. A: Math. Gen. 16
  (1983), 711-728.
 
- Moshinsky M., Smirnov Y.F., The harmonic oscillator in modern physics,
  Contemporary Concepts in Physics, Vol. 9, Harwood Academic,
  Amsterdam, 1996.
 
- Park D., Relation between the parabolic and spherical eigenfunctions of
  hydrogen, Z. Phys. 159 (1960), 155-157.
 
- Pauli W., Über das Wasserstoffspektrum vom Standpunkt der neuen
  Quantenmechanik, Z. Phys. 36 (1926), 336-363.
 
- Stone A.P., Some properties of Wigner coefficients and hyperspherical
  harmonics, Proc. Cambridge Philos. Soc. 52 (1956),
  424-430.
 
- Sun G.H., Superintegrabilidad en ecuaciones diferenciales de la física,
  Ph.D. thesis, ESFM, IPN, México, 2012.
 
- Tater C.B., Coefficients connecting the Stark and field-free wave-functions
  for hydrogen, J. Math. Phys. 11 (1970), 3192-3195.
 
 
 | 
 |